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Large-Scale Waveform Inversions of Surface Waves for Lateral Heterogeneity 
1. Theory and Numerical Examples 

ROEL SNIEDER 

Department of Theoretical Geophysics, University of Utrecht, The Netherlands 

Surface wave scattering theory is presented as a new method for analyzing teleseismic surface wave data. 
Using surface wave scattering integrals the effect of lateral heterogeneity both on the surface wave coda 
generation and on the direct surface wave is described. Since the employed scattering theory for the forward 
problem is linear, the inverse problem can conveniently be solved in the least squares sense using an iterative 
matrix solver. For waveform inversions of the direct surface wave, only near forward scattering contributes. For 
this case the isotropic approximation is introduced, which makes it possible to retrieve phase velocity 
information from scattering theory. It is shown that for practical waveform inversions the resulting system of 
linear equations is extremely large and how row action methods can be used conveniently for carrying out the 
inversion on moderate size computers. The performance of the inversions is illustrated with two numerical 
examples. In the first example the surface wave coda generated by one point scatterer is inverted. It is shown 
that the reconstruction in this case is similar to Kirchhoff migration methods as used in exploration seismics. In 
the second example, ray geometrical effects (focusing and phase shifting) are obtained from the linear inversion 
with scattering theory. It follows from this example that linear waveform inversion can simultaneously fit the 
amplitude and the phase of surface wave data. 

1. INTRODUCTION 

Standard surface wave analysis proceeds by extracting path- 
averaged group or phase velocities from surface wave data using 
dispersion analysis. If sufficient data are available, these path- 
averaged dispersion data can be used to determine the local phase 
or group velocity. Mathematically, this approach relies on the 
great circle theorem [Backus, 1964; Jordan, 1978; Dahlen, 1979] 
or more accurately on the minor arc theorem [Romanowicz, 1987]. 
These theorems state that surface waves are only influenced by the 
integral of the phase or group velocity over the source receiver 
great circle (or minor arc). This is justified if the lateral 
heterogeneity is smooth on a scale of a wavelength of the surface 
waves under consideration. 

In practice, this condition may not be satisfied. For example, a 
30-s Rayleigh wave has a wavelength of approximately 120 km. 
In continents the lateral variation on this scale can be 

considerable, so that the use of the great circle (minor arc) 
theorem and the related dispersion measurements are not justified. 
Surprisingly, this well-known fact is widely ignored, and in some 
cases, dispersion analysis is used over structures which have the 
same length scale as the surface waves [e.g., Panza et al., 1980; 
Calcagnile and Scarpa, 1985]. If the structure is not smooth on a 
scale of a wavelength, surface wave scattering and multipathing 
may occur. This is documented for reflection of surface waves at a 
continental margin by Levshin and Berteussen [1979] and 
Bungum and Capon [1974]. Linearized scattering theory can be 
used to describe these effects. This theory is developed both for a 
flat geometry [Snieder, 1986a, b], and for a spherical geometry 
[Snieder and Nolet, 1987]. 

Scattered surface waves must to some degree be responsible for 
the generation of the surface wave coda, and it would be fruitful 
to extract this information from the surface wave coda. Snieder 

[1986a] presents a holographic inversion scheme for the surface 
wave coda, reminiscent of migration procedures in exploration 
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seismics. This inversion method has been applied successfully to 
image the surface wave reflections from a concrete dam on a tidal 
flat [Snieder, 1987a]. In order to achieve this, several severe 
approximations have been used, and it is deskable to give 
waveform inversion for surface data a firmer theoretical basis. 

This paper serves to provide a rigorous waveform-fitting method 
for surface waves, based on surface wave scattering theory. This 
inversion is set up as a huge matrix problem, and it is shown how 
solutions can be found iteratively. 

There is, however, more to be gained from surface wave 
scattering theory than an analysis of the surface wave coda. 
Surface wave scattering theory can also be used to describe the 
distortion of the direct wave due to lateral heterogeneity [Snieder, 
1987b]. This allows not only for accurate forward modeling of the 
direct surface wave in the presence of lateral heterogeneity but 
also for a waveform inversion of the direct surface wave train. In 

this way both amplitude and phase information can be used. 
A waveform inversion of surface wave data was first attempted 

by Lerner-Lain and Jordan [1983], who linearly fitted higher- 
mode surface waves with a laterally homogeneous model. Nolet et 
al. [1986a] extended this method to incorporate nonlinear effects 
and lateral inhomogeneity. However, they only used the phase 
information of the surface waves. Yomogida and AkJ [1987] used 
the Rytov field to fit both the amplitude and phase of fundamental 
mode Rayleigh wave data. The starting point of Yomogida and 
Ak/[1987] is the two-dimensional wave equation. One can argue 
that their method lacks rigor because it is not clear that surface 
waves satisfy the two-dimensional wave equation. Tanimoto 
[1987] determined a global model for the S velocity in terms of 
spherical harmonics up to order 8 using long-period higher-mode 
waveforms. In computing the synthetics he used the great circle 
theorem to compute the phase shift, and he ignored focusing 
effects. Because of the low order of his spectral expansion (l <8), 
ray theory could be used for this inversion. This means that up to 
this point, all waveform inversions for surface waves relied either 
on ray theory or on the two-dimensional wave equation. 

In this paper it is shown how linear scattering theory can be 
used for waveform fitting of the direct surface wave by the 
reconstruction of a two-dimensional phase velocity field. The 
derivation uses the full equations of elasticity, and neither uses ray 
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theory nor the two-dimensional wave equation. Specifically, there 
is no need to assume any smoothness properties of the medium. In 
fact, in section 7 a numerical example is shown of the distortion 
of the direct surface wave by a structure with sharp edges. A 
restriction of this inversion method is that small scattering angles 
are assumed. This can in practice be realized by time windowing 
the data. 

In section 2 some elements of surface wave scattering theory 
are revisited. The isotropic approximation, which allows the 
determination of phase velocities from scattering theory, is 
introduced in section 3. Section 4 features a method to invert the 

resulting scattering integral. Due to the extremely large size of 
the resulting matrix equation this is not without problems, and in 
section 5, several tricks are shown to make these computations 
feasible on systems as small as a super minicomputer. 
Unfortunately, the surface wave inversion problem is in reality 
nonlinear, and the assumption of linearity is only justified for 
reference models which are sufficiently close to the real Earth. It 
is therefore advantageous to perform a nonlinear inversion (using 
ray theory) first (section 6) in order to find a smooth reference 
model for the subsequent linear inversion. (In this paper this linear 
inversion is referred to as "Born inversion.") In section 7 it is 
shown that a more or less realistic distribution of scatterers 

produces a realistic looking coda but also that sharp lateral 
heterogeneity may severely distort the direct surface wave. 
Examples of inversions for a point scatterer and for ray 

fundamental modes, so that the (Greek) mode indices are usually 
omitted. The polarization vector p is for Love waves given by 

p• =-(/+•A) W(r) • (2a) 

and for Rayleigh waves by 

PR = (l +•A) V (r ) fi, - iS (r )• (2b) 

where f', ,•, and • are unit vectors in the vertical, radial, and 
transverse direction, respectively. The eigenfunctions U, V, and 
W of the Earth's normal modes are defined by Gilbert and 
Dziewonski [1975]. The eigenfunctions are assumed to be 
normalized as by Snieder and Nolet [1987]: 

i/• l P(r )IU2(r ) + l (l + l )V2(r )l r2dr = 
•AlP(r)l(l+l)W2(r)r2dr= l+•A /4COUg 2re 

(3) 

The angular quantum number l is related to the wave number by 
the relation ka=l+•A, and Ug is the angular group velocity of the 
mode under consideration. The excitation tensor E in (1) can be 
expressed in the polarization vector at the source 

E(rs ,•ts ) = I•Or + i (l+V2) •slp(rs ,•ts ) (4) r 

The perturbation of the wave field due to the lateral 
geometrical effects (phase shifting and focusing) are presented in heterogeneity can be expressed as a double sum over incoming 
the last two sections. Application of this technique to surface ({5) and scattered (v) surface waves modes [Snieder and Nolet, 
wave data recorded with the Network of Autonomously 
Recording Seismographs (NARS) are presented by Snieder, [this 
issue] (hereafter referred to as paper 2). 

Throughout this paper the limitations of surface wave scattering 
are assumed [Snieder and Nolet, 1987]; that is, it is assumed that 
the heterogeneity is weak and that the far-field limit can be used. 
In order to transcend these limitations a considerable amount of 

theoretical work remains to be done. For reasons of simplicity, 
only vertical component fundamental mode data are assumed, but 
this restriction is not crucial. Note that this does not mean that the 

fundamental Love wave need not be considered, because in 

general a double-couple source excites Love waves, which may be 
converted by the heterogeneity to Rayleigh waves. 

2. SURFACE WAVE SCATI'ERING Ti•ORY 

A dyadic decomposition of the surface wave Green's function 
[Snieder, 1986a; Snieder and Nolet, 1987] has allowed compact 
expressions for beth the direct and the scattered surface waves. In 
this section, elements of surface wave scattering theory are briefly 
presented. Throughout this paper a spherical geometry is assumed, 
and computations are performed to leading order of ka, where k 
is the wave number and a the circumference of the Earth. As 

shown by Snieder and Nolet [1987], the unperturbed surface wave 
excited by a moment tensor M can be written as a sum over 
surface wave modes (with index v): 

i(/•,aa+•) 
u0(r,0,qb) = •pV(r,g/• ) e (E"* (rs,gs):M) (1) 

,, s•x/-r-m-x 

In this expression, gs and g/• are the azimuths of the source 
receiver minor arc at the source and receiver, respectively, 
counted anticlockwise from south, while A is the epicentral 
distance. In this paper we shall only be concerned with the 

1987] 

i (kya A2+•) 
(sin A2) 1A 

x 

i (k.a A•+•) 
e 

x (E ** (rs ,gs ').M) d fl' (5) 
(sin A1) 

The surface wave distortion is expressed as a scattering integral 
over the horizontal extend of the heterogeneity (0',qb'). The minor 
arc from the source to the heterogeneity (0',qb') defines the azimuth 
gs' at the source and the angular distance A1, while the minor arc 
from (0',qb') to the receiver defines the azimuth I.t/•' at the receiver 
and the angular distance A2. The interaction matrix 1/v* describes 
the coupling between the modes v and {5. For isotropic 
perturbations in the density •Sp and the Lam6 parameters •SX. and 
•Sg the interaction matrix depends only on frequency and the 
scattering angle •P defined by 

• = go,., - gi• (6) 

(go,.t and gi• are the azimuths of the incoming and scattered wave 
at the scatterer.) Extensions for perturbations of interfaces and 
gravitational effects are given by Snieder and Romanowicz 
[1988], while the effects of anisotropy are discussed by 
Romanowicz and Snieder [ 1988]. 

For perturbations in the density and the Lam6 parameters the 
interaction terms are depth integrals containing the heterogeneity 
and the modes under consideration [Snieder and Nolet, 1987]. For 
example, the Love wave to Rayleigh wave conversion (R <--L ) is 
given by 

+ (__1 Ut• +Or Vt• )(Or Wœ )all ] r2dr sin/l/ r 
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R<-R Radiation pattern for T=34 s. 
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Fig. la. Radiation pattem for the interaction of the fundamental Rayleigh 
mode with itself for surface topography (3 km) and for S velocity 
perturbations extending down to 170 km (8•/•=4%), 110 km 
(8•/•=4%), and 33 km (•/•=12%). The effective size of the scatterer is 
100x100 km2. The direction of the incoming wave is shown by an 
alTOW. 

+ (lR+:A)2(lœ +•)21 VR Wœ •!1 dr sin 2•1/ (7) 

For Love-Love wave interactions (LL) or Rayleigh-Rayleigh 
wave interactions (RR) a similar dependence on the scattering 
angle exists 

•7 (o) •7 (t) •? (2) ½RR o, • = v R• + v • o, • COS ß +, •R o• • COS 2•P (8) 

In Figures la and lb the radiation patterns are shown for 
interactions of the fundamental Rayleigh wave with itself and for 
conversion from the fundamental Love wave to the fundamental -*.. 

Rayleigh wave. These radiation patterns are shown for surface o 
topography [Snieder, 1986b; Snieder and Romanowicz, 1988], and 
for a constant relative perturbation in the S velocity $½/½ down to 
different depths with an unperturbed density (õp=0). The •5 
perturbations in the Lam6 parameters are equal. 

It is shown by Snieder [1986b] that the interaction terms for 
forward scattering and unconverted waves are proportional to the o. 
perturbation of the phase velocity õc. Using the normalization (3), o 
equation (9.3) of Snieder [1986b] can be written as 

õc = 2re 1 12u,,,: ..... ,,a(•=O) . (9) c5 
c I+:A (l+«) ' 

Up to this point, it has been assumed that the real Earth can be 
treated as a radially symmetric reference model (producing a 
seismogram uø), with superposed lateral inhomogeneities (leading 
to the seismogram distortion ut). However, as shown in Snieder 
[1986a], the theory can also be formulated for a smoothly varying 
reference model, with embedded heterogeneities. (Smooth means 
that the lateral variation is small on a scale of one horizontal 

wavelength.) In that case the phase terms and the geometrical 

spreading terms of the propagators follow from ray theory 
[Snieder, 1986a]. Solving the ray tracing equations is a 
cumbersome affair, and as long as the inhomogeneity of the 
reference medium is sufficiently weak, the ray geometrical effects 
can be expressed as simple line integrals over the minor arc under 
consideration [Woodhouse and Wong, 1986; Romanowicz, 1987]. 
Using these results, the propagator terms exp i (kaA+•c/4)/•A 
in (1) and (5) should for the case of a smooth reference medium 
be replaced by 

ka A --> ka õc d A (10a) 
c 

A 

sina --> sina-lsina'sin(a-a')a..(õC)da' (lOb) c 

The azimuth terms in the polarization vectors and the scattering 
angle should be replaced by 

A 

gs --> gs - s-• sin (A-A') a• (õc) dA' c 

A 

1 ! A' õC)dA' g• --> g• + s-• sin an(- •- 

(10c) 

(10d) 

with similar expressions for the azimuths of the incoming and 
outgoing wave at the scatterer. In these expressions, õc/c is the 
relative phase velocity perturbation of the reference medium, 
while 3n and 3,, are the first and second angular derivatives in the 
transverse direction. 

One should be careful giving u z the interpretation of the 
scattered surface wave because u • describes all perturbations of 
the wave field due to the perturbations superposed on the 
reference medium. If there are abrupt lateral variations, this leads 
to surface wave scattering. However, in the case of a smoother 
perturbation on the reference model, u • describes the change in 
the direct wave due to these inhomogeneities. For example, it is 
shown explicitly by Snieder [1987b] that the "scattering integral" 
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Fig. lb. Radiation pattern for the conversion from the fundamental Love 
mode to the fundamental Rayleigh mode. Conventions as in Figure la. 
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(5) describes the ray geometrical effects on the direct wave due to 
smooth lateral heterogeneity. 

3. ISOTROPIC APPROXIMATION 

The surface wave scattering formalism, as presented in section 
2, establishes a linear relation between the lateral heterogeneity 
and the perturbations of the surface wave field. In principle, a 
three-dimensional inversion could therefore be formulated as a 

huge system of linear equations by discretizing both the scattering 
integral over the heterogeneity (5) and the depth integrals in the 
interaction terms (7). Unfortunately, the simplicity of this 
approach is elusive. An inversion using the surface wave 
scattering integral (5) should take care of the following effects: 
(1) The inhomogeneities should be located at their correct 
horizontal position. (2) The depth distribution of the 
heterogeneity should be determined. (3) The contributions from 
the different inhomogeneities 15p, fiX,, and 15g should be 
unravelled. It is difficult those achieve these goals, since the 
heterogeneity acts on the wave field only through the interaction 
terms 17 *ø. This means that it is only possible to retrieve certain 
depth integrals of the heterogeneity. Information for different 
frequencies, and possibly different modes, is needed for the 
reconstruction of the depth dependence of the inhomogeneity. The 
contribution of the different types of inhomogeneity (•Sp,15X,,•5t.t) 
can only be retrieved by using information of different scattering 
angles. 

It will be clear that a complete three-dimensional reconstruction 
of the heterogeneity is hard to realize with a finite set of band- 
limited, noise-contaminated data. With present data sets there are 
two realistic approaches. One can parameterize the depth 
dependence and the different contributions of 15p, fiX,, and 15g in a 
finite set of basis functions. This reduces the degrees of freedom 
of the heterogeneity, which facilitates a well-behaved inversion. 
This approach has been taken in a field experiment where surface 
waves on a tidal flat were reflected by a concrete dam [Snieder, 

the information contained in the direct wave. Note that there are 

no smoothness restrictions on the heterogeneity, so that it is in 
principle possible to reconstruct a two-dimensional phase velocity 
field without doing any dispersion measurements. In this way, the 
conditions for the validity of the great circle theorem need not be 
fulfilled. 

4. INVERSION OF THE SCATrERING INTEGRAL 

The linear relation (5) between the perturbation of the wave 
field and the perturbation of the medium can be written as 

3m 'm (O',q)') go(A•) (E ø* :M)dCZ' (13) 
with the propagators defined by 

i (k•a A+•) 
g•(A) = e (14) 

or its equivalent for a smoothly varying reference medium (10). 
The model parameter m designates either the heterogeneity 
($p,$X,,151.t) parameterized in some suitable form or the phase 
velocity perturbation $c/c if the isotropic approximation is used. 
The difference between the recorded surface wave data and the 
synthetics for the reference model (u ø) can for all events, stations, 
and frequency components be arranged in one (huge) vector d of 
data residuals. Likewise, the model parameters can, after a 
discretization in cells of the surface integral (13) (and possibly 
also of the depth integrals in the interaction terms), be arranged in 
one model vector m. (Of course, one does not have to expand the 
heterogeneity in cells; other parameterizations can also be used.) 
In that case, (13) can be written as a matrix equation 

di = •] Giirni (15) 
i 

where Gii is the spectral component of the synthetic seismogram 
1987a]. In this test example the depth dependence of the for event-station pair "i" at frequency o0i, due to a unit 
heterogeneity was prescribed, and an accurate reconstruction of perturbation of model parameter "j." 
the location of the dam was realized using the surface wave coda. In general, the matrix G is extremely large. The reason for this 

Alternatively, one can make the "isotropic approximation." It is that the integrand in the original scattering equation (13) is 
follows from (8) that the R <---R radiation pattern is stationary with 
respect to the scattering angle for near forward directions. This 
can be verified in Figure la for several different inhomogeneities. 
Furthermore, it follows from (7) that the R,--L conversion 
vanishes in the forward direction. From Figure lb it can be seen 
that for the shown examples the R <--L conversion is small for 
near forward directions. This means that (at least for the 
fundamental modes) for near forward directions one can make the 
"isotropic approximation." This means that 

:o 

i?RR _ i7(0) 17(1) 17(2) I+IA $C + + j c 

These expressions are extremely useful because they make it 
possible to retrieve the phase velocity perturbation from scattering 
theory. This allows a two-stage inversion of surface wave data. In 
the first step the scattering theory is used to find the phase velocity 
perturbation using (5), (11), and (12). Once these local phase 
velocities are computed, a standard linear inversion can be used to 

determine the depth dependence of the heterogeneity [Nolet, 
1981]. The catch is that this approach forces us to use 
information for small scattering angles only. In practice, this can 
be achieved by time windowing the seismograms, and only using 

rapidly oscillating with the position of the inhomogeneity. This 
means that in order to discretize (13) accurately, a cell size much 
smaller than a wavelength is needed. For an inversion on a 
continental scale for surface waves with a wavelength of say 100 
km, several thousands of cells are needed. Fortunately, extremely 
large systems of linear equations can be solved iteratively in the 
least squares sense (Van der Sluis and Van der Vorst, 1987), so 
that a brute force inversion of G need not be performed. The least 
squares solution minimizes the misfit [d-Gml 2, so that one 
performs in fact a least squares waveform fit of the data residual d 
to the synthetics G m. 

In the inversions presented in this paper, and in paper 2, the 
algorithm LSQR of Paige and Saunders [ 1982a,b] is used to solve 
(15) iteratively in the least squares sense. LSQR performs the 
inversion by doing suitable matrix multiplications with G and G r . 
(In the language of modem optimization schemes [Tarantola and 
Valette, 1982], one would say that one only needs to solve the 
forward problem.) There is no need to store the matrix in memory; 
in fact, one only needs to supply LSQR with a subroutine to do a 
multiplication with one row of G or Gr. As an additional 
advantage, LSQR has convenient "built in" regularization 
properties [Van der Sluis and Van der Vorst, 1987]. The stability 
of LSQR is confirmed by Spakman and Nolet [1987], who applied 
LSQR to a tomographic inversion of an extremely large set of P 
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wave delay times and who made a comparison with other iterative 
solvers of linear equations. 

The inversion with LSQR has some interesting similarities with 
migration methods in exploration seismics. The first iteration of 
LSQR yields a solution proportional to Grd, higher iterations 
perform corrections to the misfit [Van der Sluis and Van der 
Vorst, 1987]. It is shown in detail by Snieder [1987a] that the 
contraction Grd amounts to a holographic reconstruction of the 
heterogeneity. This means that the waves propagating away from 
the sources (the illumination) are correlated with the surface wave 
residuals which have back propagated from the receivers into the 
medium. For one source-receiver pair this leads to an ellipsoidal with 
contribution to the reconstructed image. By summing over all 
source-receiver pairs (which is implicit in the product G r d) an 
image is constructed. It is shown by Tarantola [1984a,b] that this 
procedure is similar to Kirchhoff migration as used in exploration 
seismics. Just as with these techniques, the surface wave 
reconstructions using the method of this paper will contain 
"smiles" [Berkhout, 1984] if insufficient data are used. 

It may be advantageous to impose an a priori smoothness 
constraint on the solution. This can be achieved by solving instead 
of (15) the matrix equation 

GSfn = d (16) 

where S is a prescribed smoothing matrix. This yields the solution 

m=•m (17) 

which incorporates the smoothness criterion imposed by S. 

5. PRACTICAL IMPLEMENTATION OF SOLVING THE MATRIX EQUATION 

Solving the linear system (15) or (16) is not entirely 
straightforward because the matrix may be extremely large. For 
example, discretizing the continent of Europe (with a size of say 
3500x3500km 2) in cells of 35x35 km 2 (which is 1/4 of the 
wavelength of a 30-s fundamental mode Rayleigh wave) leads to a 
model of 10,000 cells. For the data set used in paper 2, there are 
approximately 2500 spectral components of surface wave data to 
be fitted. This means that storing this matrix requires 100 Mbyte 
of disc space, which is impractical (if not impossible on many 
machines). As mentioned before, LSQR does not need the whole 
matrix at once but only needs access to the rows of G and Gr. In 
principle, the matrix can therefore be computed during the 
inversion. However, due to the large number of trigonometric 
operations required for the computation of the synthetics this 
leads to prohibitive CPU times. 

If we restrict ourselves to vertical component data for the 
fundamental mode only, the elements of the matrix G have the 
form 

G =Ane iq)R +At•e iq)L (18) 
The first term in this expression describes the scattering of the 
fundamental Rayleigh mode to itself, while the second term 
describes the conversion from the fundamental Love mode to the 

fundamental Rayleigh mode. The terms On and Or. are the phase 
terms of the propagators (14), while the complex amplitudes An 
and At. contain the remaining terms. 

Due to the phase terms, the matrix Gii (which is the synthetic 
for data point i due to a unit perturbation of model parameter j ) is 
an oscillatory function of the position of the inhomogeneity and 
hence of the index j. This oscillatory character makes it 
impossible to use some interpolation scheme to compute Gii. 
However, the phase functions On, Or. and the complex amplitudes 

An, At. are smooth functions of the location of the inhomogeneity. 
This makes it possible to store these terms at selected grid points 
and to compute values at intermediate points by interpolation 
during the inversion. One could call this procedure "Filon matrix 
multiplication." 

This procedure can be simplified even further by using the fact 
that the the wave numbers of the fundamental Rayleigh wave and 
the fundamental Love wave usually are not too different (hence 
0n--0L ). If (18) is written as 

G = Z e i½• (19) 

Z = An + Ar• e i (•-•) (20) 

one only needs to store Z and {•n at selected grid points. 
The functions Z and {•n are, in general, also a smooth function 

of frequency, so that the matrix only needs to be stored at certain 
selected frequencies. The value of the matrix elements for 
intermediate frequencies can also be computed by interpolation. 
This interpolation with respect to frequency can be performed 
with a simple linear interpolation. For the interpolation with 
respect to the location of the inhomogeneity it is better to use a 
quadratic scheme. The reason for this is that the phase {•n has a 
minimum on the minor arc between the source and the receiver. It 

is especially at this location that accuracy is required if the 
isotropic approximation is used, because in that case the 
requirement of a small scattering angle confines the solution to the 
vicinity of the minor arc. A linear interpolation scheme for the 
horizontal coordinates is not able to reproduce such a minimum 
and is thus unsuitable. 

In the inversions shown in paper 2 for the structure under 
Europe and the Mediterranean, an area of 3500x3500 km 2 is 
investigated. Storing the matrix on a 15x15 grid and interpolating 
in between produced accurate results. (Halving the grid distance 
for the interpolation did not change the solution.) In the period 
range from 30 s to 100 s, only 15 frequencies were sufficient to 
achieve an accurate interpolation with respect to frequency. 
(Doubling the number of frequency points for the interpolation 
did not change the solutions.) In this way, only 2 Mbyte of disc 
space was needed to store the interpolation coefficients for the 
matrix G. 

The edges of the domain of inversion require special attention. 
Artificial reflections may be generated at the edge of the domain 
of inversion if this domain is truncated abruptly (E. Wielandt, 
personal communication, 1986). This problem can be 
circumvented by tapering the matrix G near the edges of the 
domain. In the inversions used in this study a linear taper was 
applied to G near the edges of the domain over a length of 254 
km. 

The theory formulated here is strictly valid only in the far field 
[Snieder and Nolet, 1987]. It can be seen from (14) that the theory 
becomes singular in the near field. Due to the lack of a better 
theory, this problem is ignored in this study. The singularity was 
removed by replacing the sin A term in the propagator (14) by a 
constant (sin Ao ), whenever A<A o . A value of 2.7 ø was adopted 
for 

The data fit (15) or (16) is performed in the frequency domain, 
whereas surface wave data are recorded in the time domain. After 

applying some taper these data can be transformed to the 
frequency domain. In case one uses the isotropic approximation a 
time window is needed to extract only the direct wave. In general, 
the data are therefore in the time domain multiplied with some 
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nonnegative time window w(t). Of course, the matrix elements, 
which are the spectral components of the inhomogeneity in each 
cell, should incorporate the effects of this time window. A 
multiplicafive window in the time domain acts as a convolution in 
the frequency domain, which complicates the inversion. 
However, it is shown in Appendix A that if the time window w (t) 
is nonnegative and sufficiently broad, that due to the surface wave 
character of the signal this filter acts in the frequency domain as a 
simple multiplication with w (L/U (to)). In this expression, L is 
the distance covered by the surface wave, and U (to) is the group 
velocity of the mode under consideration. 

6. WAVEFORM FITrING BY NONLINEAR OPTIMIZATION 

The theory presented here establishes an inversion scheme in 
case a linear relation exists between the inhomogeneity and the 
deviation between the recorded surface waves and the synthetics 
for the reference model. In practice, this relation may suffer from 
nonlinearities. The main culprit for this effect is that small 
changes in the wave number are multiplied in the exponent by a 
large epicentral distance so that 
exp i (k +$k )L = (1+i $kL ) exp ik.L may be a poor approximation. 

It is therefore desirable to perform first a nonlinear inversion in 
order to find a smooth reference model for the Born inversion. 

This nonlinear inversion can be achieved by minimizing the 
penalty function 

Model for scattering computation. 

Fig. 2. Horizontal extend of the heterogeneity used in the example of the 
scauering computation. The inhomogeneity extends down to 170 km with 
•/•=10%, $p=0, and 

In this expression 

B•' = l •v(m,t)[u(t)-s(m,t)ldt 
B• = f sv(rn,t)[u(t)- s(rn,t)]dt 

(23) 

(24) 

(25) 

structure, the M7-model of Nolet [1977] is used for the density 
and the elastic parameters, while the attenuation of the PREM 
model [Dziewonski and Anderson, 1981] is employed. The 
inhomogeneity consists of a constant S velocity perturbation of 
10% down to a depth of 170 km, while the density is unperturbed. 
Equal perturbations of the Lam• parameters are assumed. 
Synthetics are computed with a brute force integration of (5). In 
order to satisfy the criterion of linearity, only periods larger than 
30 s are considered (see paper 2). 

Figure 3 shows the synthetic seismogram for the laterally 
homogeneous reference model, the model with the 
inhomogeneity, and data recorded at station NE02 of the NARS 
network [Dost et al., 1984; Nolet et al., 1986b]. Observe the 
realistic looking coda in the synthetics for the model with the 
scatterers. Of course, one cannot speak of a fit of the recorded 
surface wave data for this simple minded model, but the coda in 
the data and in the synthetics are at least of the same nature. 
Given the group velocity of the surface waves, the contributions 
from the different scatterers can be identified by the arrival time 
of the surface waves. The surface waves scattered by the 
:'Tornquist-Tesseyre zone" interfere with the later part of the 

the gradient of the misfit can be approximated by 

= . I3-h- + 

S (m ,to)= •vSv(rn,to)= • Ave i •v (22) 

incorporate ray geometrical effects. B icubic splines are useful for 
representing the lateral phase velocity variations because they 
ensure continuity of the phase velocity with its first and second 
derivatives. In this approach, the model parameters m are the 
phase velocities at some selected grid points.) 

The gradient of the misfit M (m) = I (u (t) - s (m ,t))2dt for one 
source receiver pair can for band limited data be estimated 
analytically. It is shown in Appendix B that if the synthetic 
consists of a sum of modes 

F(rn)=Zf 's(t)-s'S(rn,t at +7I I IVffn12df• (21) and I ..... dx denotes the integral over the minor arc from the 
ra source to the receiver. The virtue of this approach is that the 

with respect to the model parameters m. In this expression, u r• (t) correlations B •' and B •' have to be computed only once and that 
is the surface wave seismogram for source s and receiver r, while the derivatives of all model parameters follow from these 
s • (t) is the corresponding synthetic for model m. The last term correlations. Note the similarity between (24) and the correlation 
serves to select the smoothest possible solution by minimizing the functions used by Lerner-Lain and Jordan [1983] (the "bccfs") in 
horizontal gradient I V•m I. their linear inversion of surface wave data. 

As shown by Nolet et al. [1986a], the minimization of F in (21) 
can be achieved efficiently using conjugate gradients. In this kind 7. A NUMERICAL EXAMPLE OF SCATTERED SURFACE WAVES 
of inversion one only needs to solve the forward problem In order to see whether the scattering theory presented here is 
repeatedly [Noletetal., 1986a], and mostofthecomputertimeis useful for inversion, it is instructive to study synthetic 
spend computing the gradient of the penalty function with respect seismograms for some artificial distribution of scatterers. Figure 2 
to the model parameters. It is therefore crucial to have a fast shows a fictitious distribution of scatterers which forms an 
method for computing this gradient. (In this study, the forward extremely crude model of structures as the Alps, the Tornquist- 
problem is solved using the line integrals (10) in order to Teisseyre zone, and the edge of north Africa. As a reference 
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Example for scattering computation for path A, T>30 s. 
i i 

• direct only 

I I 

600 800 1000 

time (s) 

Full synthehcs and direct waves only, for the paths B, C and D. 
I I 

d•rect + scattered • 
....... direct only Ji /• 

th 

• I • I 

6O0 800 1000 

time (s) 

Fig. 3. Seismograms for path A of Figure 2. The top seismogram is for the Fig. 4. Synthetic seismograms for the laterally homogeneous reference 
laterally homogeneous reference medium, the middle seismogram is for medium and the medium with the inhomogeneity for the paths B, C, and D 
the medium with the heterogeneity, and the bouom seismogram shows of Figure 2. 
data. 

direct wave and lead to an amplitude increase of approximately 
40% of the direct surface wave train around 650 s. The surface 

waves scattered by the western side of the Alpine block and the 
diffraction by the comer of the African block constitute the 
surface wave coda between 750 and 950 s. The diffraction by the 
comer of the African block (arriving around 900 s) is rather weak 
because the interaction terms for the corresponding scattering 
angle are relatively small (see Figures la and lb). However, the 
surface wave coda can be made arbitrarily strong by varying the 
strength and the location of the scatterers and by allowing shorter 
perids to contribute. 

In Figure 4 the synthetics are shown for paths which propagate 
with different lengths through the central block which mimics the 
Alps. For path B, which does not propagate through the 
heterogeneity, only the coda is affected, while for the paths C and 
D the direct wave is substantially distorted. For path D the 
inhomogeneity induces both a forward time shift as well as an 
amplitude increase. Physically, this happens because the scattered 
waves arrive almost simultaneously with the direct wave (forward 
scattering). The resulting interference leads to a distortion of the 
arriving wave train. This example shows that nonsmooth 
structures may lead to a distortion of the direct surface wave. 
Interestingly, the phase shift of the direct surface wave in 
seismogram D coincides up to a deviation of approximately 15% 
with the path-averaged value of the phase velocity perturbation. 
This implies that in this case the phase of the direct surface wave 
is described well by ray theory, despite the fact that applying ray 
theory is strictly not justified. However, the amplitude of the 
surface wave is very sensitive to abrupt lateral variations of the 
structure. 

8. INVERSION FOR A POINrl ' SCATTERER 

In order to see how the inversion for the surface wave coda 

operates, an example is shown where one point scatterer 
influences one seismogram. This point scatterer has the same 
depth structure as in the example of section 7, but has an effective 

medium with the scatterer are shown in the top seismograms of 
Figure 5. The point scatterer has generated a wave packet which 
arrives after the direct wave between 600 and 700 s. The Born 

inversion is applied to these data for a model of 100x100 cells. 
After three iterations the model shown in Figure 6 is produced. 
(The correct depth dependence of the heterogeneity is prescribed.) 
The corresponding synthetics are shown in the bottom 
seismograms of Figure 5. The "data" for this point scatterer have 
been fitted quite well. 

The resulting model (Figure 6) bears, of course, no resemblance 
to the original point scatterer because it consists of an ellipsoidal 
band of positive and negative anomalies. With one source and one 
receiver it is impossible to determine the true location of the 
heterogeneity on this ellipse. By using more sources and 

Example for point scatterer 
' I ' I ' I ' 

"data" 

........ synthetics 

I ' I ' I ' 

I , I , I , I , I • I 

400 500 600 700 800 900 

time (s) 

strength of 5•/•xarea =70x70 km 2. The synthetics for the laterally Fig. 5. Waveform fit before and after Born inversion for a synthetic 
homogeneous reference medium and the (synthetic) data for the seismogram generated with the point scatterer of Figure 6. 
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-1.25% • .................. +1.25% 

Reconstructed model for a point scatterer. 

Fig. 6. Relative shear velocity perturbation (•5•/•) as determined from 
Bom inversion of the top (solid) seismogram of Figure 5. The triangle 
marks the source, the square marks the receiver, and the circle gives the 
true location of the point scatterer. 

receivers, an image is constructed by the superposition of these 
ellipses. 

As mentioned in section 4, the result of the first iteration of the 

Born inversion is proportional to G rd, which can be interpreted 
as the temporal correlation between the excited wave field and the 
back propagated data residuals [Snieder, 1987a]. Since surface 
wave trains consist of oscillating wave packets, this correlation 
also has an oscillatory nature, which produces the alternation of 
positive and negative anomalies in Figure 6. The "holes" in these 
ellipses are caused by the nodes in the radiation pattern of the 
source (a double couple) and in the radiation pattern of the 
scatterers (the thick solid curve in the Figures la and lb). 

The strength of the reconstructed inhomogeneity is of the order 
of 1%, whereas the synthetic "data" have been computed for a 
point inhomogeneity of 100% with an effective area of 
70x70 kin2. The reconstructed heterogeneity is spread out over a 
much larger area, which explains the weakened reconstructed 
image. Suppose the heterogeneity is spread out over zone of 
2000x300km2, which is about the right size (see Figure 6). This 
would lead to a weakening of the reconstructed image of 
70x70km2/2000x300km 2= 1%, which is of the order of 
magnitude of the reconstruction in Figure 6. 

9. INVERSION FOR RAY GEOMETRICAL EFFECTS 

In this section it is shown how the Born inversion takes ray 
geometrical effects such as focusing and phase shifting into 
account. Synthetics have been computed for the two source- 
receiver pairs shown in Figure 7, assuming a double-couple 
source for the excitation. The seismogram for the right wave path 
has been multiplied with 1.4, and the seismogram for the left 
wave path has been shifted backward in time over 4 s (which is 
roughly 1% of the travel time). 

These seismograms have been inverted simultaneously with the 
Born inversion using the isotropic approximation. In this 
inversion a smoothness criterion is imposed because, in contrast to 

-1.25% I-- -- ............ • +1'25% 
Born reconstruction for phase shift and focussing. 

Fig. 7. Relative phase velocity perturbation (Sc/c ) as determined from 
Born inversion for ray geometrical effects. The triangles indicate the 
sources; the squares mark the receivers. 

the scattering example of section 8, no sharp heterogeneities are 
needed to generate the perturbations of the wave field. The 
domain shown in Figure 7 consists of 100x100 cells of 
35x35 km 2. The smoothing matrix that is used is given by 

Si,iod,jo=c• li*-j*l c• Iiø-jøl if li,-j,l<__N 
and I i0-j01 <__N 

Si,io,j,j ø - 0 elsewhere (26) 
where i,, i0, etc., denote the cell indices in the horizontal 
directions. In this example the values 0c=0.66 and N--4 are 
adopted. 

The resulting model after three iterations is shown in Figure 7. 
Note that because the isotropic approximation is used, Figure 7 
displays the phase velocity perturbation $c/c. (In the inversion a 
constant value of $c/c over the whole frequency band is 
assumed.) In Figure 8 the waveform fit for the left wave path in 

Inversion for phase shift effects 
' I I ' I ' I ' 

"data" 

....... synthetics f• 

, I , 

400 500 

time (s) 

J i I 

600 700 

Fig. 8. Waveform fit before and after Bom inversion for the left wave path 
in Figure 7, where the phase is shifted. 
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Inversion for focussing effects 
' i , i , I ' i , 

"data" 

........ synthetics 

, 

400 500 600 700 

time (s) 

Fig. 9. Waveform fit before and after Bom inversion for the right wave 
path in Figure 7, where the amplitude is increased. 

shown. (This is the time shifted seismogram.) The phase shift is 
correctly taken into account. This is realized by a negative phase 
velocity anomaly in the first Fresnel zone of the left wave path in 
Figure 7. This negative phase velocity anomaly is not distributed 
evenly over the first Fresnel zone of the left wave path; there are 
phase velocity minima slightly away from the source receiver 
minor arc. If these minima were absent, the resulting concave 
transverse phase velocity profile would produce an anomalously 
large amplitude due to focusing. Because of the phase velocity 
minima adjacent to the source receiver minor arc, the transverse 
phase velocity profile is actually convex at the minor arc. This 
produces defocusing of surface wave energy, which compensates 
the amplitude increase due to refraction at the edge of the Fresnel 
zone. 

The seismograms for the right wave path are shown in Figure 
9. The synthetic data are 40% too strong for the laterally 
homogeneous reference model; this is almost completely taken 
care of in the inversion. Physically, this is achieved by a negative 
phase velocity anomaly on the source receiver line and an 
anomalously high phase velocity just away from this line. This 
phase velocity pattern leads to focusing of surface wave energy, 
so that the large amplitude is fitted. This confirms not only that 
surface wave scattering theory can account for ray geometrical 
effects [Snieder, 1987b], but also that these ray geometrical 
effects are taken care of in the Born inversion. The asymmetry of 
the phase velocity pattern in Figure 7 around the wave paths is 
due to the the asymmetry in the radiation pattern of the double- 
couple source. 

There are approximately 10 cells between the maxima in the 
strips of high phase velocities for the right wave path in Figure 7. 
The focusing produced by this structure is achieved by the 
transverse curvature of the phase velocity. Increasing the cell size 
(which is computationally advantageous) leads to a representation 
of this curvature with only a few cells, which may produce 
unacceptable inaccuracies. 

10. CONCLUSION 

Large-scale inversion of the surface wave coda can in principle 
be performed using an iterative solver of a large system of linear 
equations. For this kind of inversion the depth dependence of the 
heterogeneity should be prescribed or be parameterized in a 
limited number of basis functions. Alternatively, the isotropic 

approximation can be used, which leads to a waveform fit of the 
direct surface wave due to a laterally heterogeneous phase 
velocity field. These phase velocities, determined for different 
frequency bands, can be inverted locally to a depth distribution of 
the heterogeneity. 

The Born inversions shown in this paper are performed 
iteratively using LSQR. Although LSQR is originally designed 
for sparse matrices and the matrix for surface wave scattering is 
not sparse, good results are obtained in inversions of synthetic 
data. In practice, three iterations proved to be sufficient both for 
an inversion for the surface wave coda and of the direct wave. A 

similar conclusion was drawn by Gauthier et al. [1986], who used 
an iterative scheme for fitting waveforms in an exploration 
geophysics setting. 

In hindsight, the success of linear waveform inversions in a few 
number of iterations is not so surprising. It has been argued by 
Tarantola [1984a, b] that the standard Kirchhoff migration 
methods in exploration seismics is equivalent to the first (steepest 
descent) step of an iterative optimization scheme. Analogously, 
the first step of the iterative matrix solver used here amounts to a 
holographic inversion [Snieder, 1987a] analogously to Kirchhoff 
migration. These one-step migration methods have been 
extremely successful in oil exploration, and there is no principal 
reason why a similar scheme cannot be used in global seismology. 
Applications of this tectmique to surface wave data recorded by 
the NARS array are shown in paper 2 [Snieder, this issue]. 

APPENDIX A: EFFECt OF THE TIME WINDOW FUNCTION 

ON TIlE SPECTRUM OF SURFACE WAVES 

Suppose that a surface wave seismograms (t) is multiplied with 
some nonnegative window function w(t) to give a windowed 
seismogram f (t) 

f (t) = w (t)s (t) (A1) 

In the frequency domain the application of this window leads to a 
convolution 

F (co) = • W (co')S (co-co') d co' (A2) 
Since w (t) is nonnegative, I W (co) l attains its maximum for co=O; 
this can be seen by making the following estimates: 

[W(co)[ = [ Iw(t)eiCøtdt[ < • [w(t)e icøt [dr 
= I w (t)dt = [W (ct•0) I (A3) 

If the time window has a length T in the time domain, its 
frequency spectrum will have a width of the order rc/T in the 
frequency domain. From this we conclude that long nonnegative 
time windows have a spectrum that peaks around co=0. 

Now assume that the surface wave spectrum consists of one 
mode (extensions to multimode signals are straightforward): 

S (co) = A (co)e ik(cø)L (A4) 

where L is the epicentral distance. Substituting in (A2) gives 

F (co) = • W (co')A (co-co')e ik (co-co')L d co' (A5) 
W(c0) is a function peaked around to=0, so that the main 
contribution to the co' integral comes from the point c0'=0. 
Usually, the complex amplitude A (co) is a smooth function of 
frequency, so that one can approximate for small co' 

A (co-co')=A (co) (A6) 



12,064 S•mDEm LARGE-SALE •WERSION OF SURFACE WAVE DATA. 1 

The phase term can be analyzed with a simple Taylor expansion 
L o)' 

k(o)-o)')L = k(o))L (A7) 
s(t0) 

where U(O)) is the group velocity of the surface wave mode. 
Inserting (A6) and (A7) in (A5) gives 

F (o)) = A (o))e ik (tø)L l W (o)')e-iœ tø?u ctø) do)' (A8) 
With (A4) and the definition of the Fourier transform this leads to 

F (o)) = S (o)) w (L/U (o))) (A9) 

APPENDIX B: ANALYTICAL ESTIMATION OF TttE GRADIENT 3M 

The misfit between the data d(t) and the surface wave 
synthetics s (m ,t ) for model m is in the L2 norm defined by 

M --I Id(t)-s(m,t)12dt (B1) 
Using Parseval's theorem [Butkov, 1968], the misfit has the same 
form in the frequency domain 

M = I I D (o)) - S (re,o)) 12 d o) (B2) 
In general, the model m consists of many parameters. The 
derivative of the misfit with respect to one of these parameters is 

Let the surface wave seismogram be given by a superposition of 
modes v with complex amplitude A • and phase 0• 

so that 

S (m ,o)) - • Sv(m ,o)) = 5'• A v(m ,o))e i ½v(m ,t0) 
v v 

1 3A• .30•] 
œ 

(B4) 

3S 
(B5) 

According to equation (10), the phase of the surface waves is in a 
laterally heterogeneous medium 

L 

O(o))-- I k(o),x) dx (B6) 
0 

where k(o),x) is the local wave number. Differentiation with 
respect to the model parameter m gives 

L L 

am = [ dx - - o) dx (B7) 
Inserting this in (B 5) gives 

•--•- = A• am S•(m,o)) * (o))-S* (re,o) d 

a (B8) 
When one is attempting to find phase velocities by nonlinear 
optimization, one will usually work with band passed data for 
which c(o)) can be assumed to be independent of frequency. In 
that case, the phase velocity term and the amplitude term can be 
taken out of the frequency integral. Applying Parseval's theorem 
once more to the resulting expression gives 

am • c-• -•m IJv(rn't) (t)-s(m,t dt 

-2 v• A v • l sv(m't ) (t )--s(m,t dt 
which proves equation (23). 

(B9) 
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