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[1] The relative location of seismic sources is of importance for the location of
aftershocks on a fault, for the positioning of sources in repeat seismic surveys, and for
monitoring induced seismicity. In this paper we show how the seismic coda can be used to
infer a measure of the source separation of two identical seismic sources from the
correlation of the waveforms recorded at a single receiver. The theory is applicable to an
explosive source in an acoustic or elastic medium and for a point force or double couple in
an elastic medium. For an explosive source the source separation is constrained to be
located on a sphere, while for a point force and a double couple the source separation can
be constrained to be located on an ellipsoid whose symmetry axis is determined by the
point force or double couple. We validate the theory with synthetic seismograms and
apply the theory to earthquake doublets on the Hayward fault, California. The distance
between events obtained from the coda waves agrees with the distance obtained from the
double-difference method.

Citation: Snieder, R., and M. Vrijlandt (2005), Constraining the source separation with coda wave interferometry: Theory and

application to earthquake doublets in the Hayward fault, California, J. Geophys. Res., 110, B04301, doi:10.1029/2004JB003317.

1. Introduction

[2] In a number of applications it is useful to determine
the relative location of seismic sources. Aftershocks after a
large earthquake help constrain the location and extent of
the fault plane [Lay and Wallace, 1995]. Earthquake clusters
have been used to locate fault planes, both in a tectonic
setting [e.g., Fuis et al., 2001] and in hydrocarbon reser-
voirs [Maxwell and Urbancic, 2001]. Seismicity can be
used to monitor the fluid transport properties in reservoirs
[Shapiro et al., 2002]. In repeat seismic surveys with down
hole sources, it is essential that the source separation in the
two surveys is known with great accuracy in order to reduce
the imprint of errors in the source location in time lapse
measurements.
[3] In principle, the relative position of two source

locations can be found by locating each of the sources,
and subsequently computing their relative location. The
disadvantage of this approach is that errors in the velocity
model along the whole path from the sources to the
receivers may erroneously be mapped into location errors.
The relative position computed by comparing the absolute
locations may be dominated by the location errors for the
individual sources [Pavlis, 1992]. For this reason it is
advantageous to determine the source separation directly
from the recorded waveforms.
[4] Earthquakes that occur within the same cluster of

events often generate waveforms that are highly repeatable.

Such highly repeatable waveforms have been used to
constrain the relative positions of these by measuring the
delay times between the arriving P and S waves of the
different events [Poupinet et al., 1984; Frémont and
Malone, 1987; Got et al., 1994; Nadeau and McEvilly,
1997; Bokelmann and Harhes, 2000; Waldhauser and
Ellsworth, 2000]. Such a measurement of the delay time
of P and S waves has also been used to find the relative
location between one master event and a number of smaller
events [Ito, 1985; Scherbaum and Wendler, 1986; Frémont
and Malone, 1987; VanDecar and Crosson, 1990;
Deichmann and Garcia-Fernandez, 1992; Lees, 1998].
Usually, this delay time is measured by a cross correlation
of the direct P and S arrivals for the different events. A
robust variation of this idea is based on a measurement of
the cross correlation of the direct P and S waves that is
based on an L1 norm and a nearest-neighbor approach
[Shearer, 1997; Astiz and Shearer, 2000].
[5] In this paper we propose a technique to obtain a

measure of the relative source location of two events that is
based on coda waves. The main idea is that the energy that
constitutes the coda waves is radiated in all directions with a
radiation pattern that is determined by the source mecha-
nism. When the source position changes, some wave paths
will be longer while other wave paths become shorter. This
is illustrated in Figure 1 where the original and perturbed
source locations are indicated with solid and open circles,
respectively. The wave paths from the original source
position and perturbed source position to the first scatterer
along each trajectory are shown with solid and dashed lines,
respectively. Some trajectories are longer due to the source
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displacement while others are shorter. This changes the
interference pattern of the scattered waves that constitute
the coda. Here we use the change in the coda waves to
constrain the relative locations of the events. This technique
is a new application of coda wave interferometry [Snieder et
al., 2002; Snieder, 2002, 2004b].
[6] When the source position changes, only the path

length to the first scatterer along each trajectory changes;
the later parts of the trajectories is unchanged. In single
scattering the waves travel from the first scatterer directly
to the receiver, while in multiple scattering the waves
first travel to other scatterers before reaching the receiver.
The later part of the trajectories are unchanged under a
perturbation in the source location, therefore the technique
presented here is valid both for single scattering as well as
for multiple scattering.
[7] The principles of coda wave interferometry are

introduced in section 2. The displacement of an isotropic
source in an acoustic medium is treated in section 3. The
generalization to an elastic medium that is excited by a point
force and of a double couple is presented in sections 4 and
5.1. The source displacement of an explosive source in an
elastic medium is treated in section 5.2. The application of
the theory is discussed in section 6. The theory is validated
with synthetic seismograms (section 7). We show the
application of the theory to earthquake doublets on the
Hayward fault, California, in section 8.

2. Coda Wave Interferometry and Source
Displacement

[8] In this section, we review the elements of coda wave
interferometry. A more detailed description is given by
Snieder [2002]. The idea of coda wave interferometry is
based on path summation [Snieder, 1999]. In this approach
the wave field is written as a superposition of the waves that
follow all the different scattering paths in the medium:

u uð Þ tð Þ ¼
X
T

AT tð Þ : ð1Þ

The subscript T labels the different trajectories along which
the waves have traveled. A trajectory not only specifies the
path that a wave has taken through space, it also specifies
which of the segments along that path have been traversed
as a P wave or as an S wave. The summation over
trajectories therefore also contains a summation over the
different wave modes (P or S) that an elastic wave can take
while propagating between the scatterers along each path.
The function AT(t) denotes the contribution of the trajectory
T to the waveform recorded at the station under considera-
tion. The superscript (u) in equation (1) denotes that this is
the unperturbed waveform, i.e., that associated with the
reference source position.
[9] Suppose that the source location is perturbed but that

the source mechanism is unchanged. A change in the source
location changes for each trajectory the arrival time of the
wave, the geometrical spreading for the propagation to
the first scatterer, and for a nonisotropic source and for
nonisotropic scattering, the amplitude of the wave. We
show in Appendix A that the change in the waves due to
a change in the arrival time is larger to the other changes by

a factor l/ml, where l is the mean free path, l the dominant
wavelength, and m the order of the Fourier expansion of the
radiation pattern of the source or the scattering amplitude.
(Usually, jmj � 2.) Coda waves usually show distinct P and
S wave arrivals, they are therefore not localized and l � l
[van Tiggelen, 1999]. The dominant change to the wave
field thus comes from the travel time perturbation tT for the
wave along each trajectory T, and the perturbed wave field
is given by

u pð Þ tð Þ ¼
X
T

AT t � tTð Þ : ð2Þ

Note that we do not assume that the scattering is isotropic.
[10] The change in the waveform can be measured by a

time-shifted cross correlation, with shift time ts computed
over a time window of length 2tw and center time t:

R t;twð Þ tsð Þ �
R tþtw
t�tw

u
uð Þ
i t0ð Þu pð Þ

i t0 þ tsð Þdt0R tþtw
t�tw

u
uð Þ2
i t0ð Þdt0

R tþtw
t�tw

u
pð Þ2
i t0ð Þdt0

� �1=2
: ð3Þ

As shown by Snieder [2002], this cross correlation attains
its maximum value for

ts ¼ th i t;twð Þ ; ð4Þ

where the average in expression (4) is given by

th i t;twð Þ¼
P

T A
2
TtTP

T A
2
T

: ð5Þ

In expression (5) the summation is over the trajectories with
an arrival time within the interval (t � tw, t + tw). The
maximum value of the cross correlation is given by
[Snieder, 2002]

R t;twð Þ
max ¼ 1� 1

2
w2s2t ; ð6Þ

Figure 1. Unperturbed source position (solid circle) and
perturbed source position (open circle). The path from the
unperturbed source to the first scatterer along each path is
indicated with solid lines. The corresponding path for the
perturbed source position is shown by dashed lines.
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where st is the variance of the travel time perturbation
defined as

s2t ¼
P

T A
2
T tT � th ið Þ2P

T A
2
T

; ð7Þ

where the sum is over all trajectories with an arrival time in
the employed time window. The frequency w2 is given by

w2 � �
R tþtw
t�tw

u uð Þ t0ð Þ�u uð Þ t0ð Þdt0R tþtw
t�tw

u uð Þ2 t0ð Þdt0
¼

R tþtw
t�tw

_u uð Þ2 t0ð Þdt0R tþtw
t�tw

u uð Þ2 t0ð Þdt0
: ð8Þ

The cross correlation R decreases for increasing values of
st
2. With increasing values of st

2, the relative arrival times of
the scattered waves are perturbed, which leads to a change
in the interfering scattered waves that constitute the coda.
This is reflected by a decreasing value of the cross
correlation R.
[11] This theory is based on two approximations [Snieder,

2002]. When the expressions (1) and (2) are inserted in the
cross correlation, a double sum

P
TT 0 over trajectories

results. This double sum can be decomposed into diagonal
terms and cross terms:

P
TT 0 ¼

P
T¼T 0 þ

P
T 6¼T 0 . In coda

wave interferometry these cross terms are neglected
[Snieder, 2002]. The second approximation is that expres-
sion (6) is based on a second-order Taylor expansion of
the cross correlation in the quantity tT � hti [Snieder,
2002]. This approximation is valid when this time is
small compared to the width of the cross correlation. This
condition is satisfied when wst is smaller than one.
Physically, this means that the theory is valid when the
shift in the arrival time due to the source perturbation is
smaller than a period. The perturbation in the source
location therefore must be smaller than a wavelength.
[12] The cross correlation (3) can readily be computed

given the measured unperturbed and the perturbed
waveforms, so both the location and the peak value of
the normalized cross correlation can be measured. With
expressions (4) and (6) the mean and variance of the travel
time perturbations can therefore be determined from the
observations.
[13] When the source location is perturbed, only the

length of the wave path to the first scatterer along each
path is perturbed, because a perturbation in the source
location does not change the relative positions of the
scatterers along a path. The travel time change due to a
perturbation d in the source location leads to a change in the
travel time for the wave that travels along trajectory T that is
given by

tT ¼ � 1

v
r̂T � dð Þ : ð9Þ

As shown in Figure 1, the unit vector r̂T points in the
direction in which the trajectory T takes off at the source. In
the last expression the velocity v is the velocity of the
trajectory as it leaves the source, this can either be the P
velocity or the S velocity. We assume throughout this paper
that the velocity is constant over the region over which the
source is displaced and that the velocity is isotropic.
[14] When the scatterers are distributed homogeneously,

the summation over all trajectories that leave the source can

be replaced by an angular integration over all directions
with which a wave can leave the source. Since the averages
(5) and (7) are taken with a weight given by the energy
of the wave that travels along each the trajectory, the
integration over all takeoff directions at the source is to
be weighted with the radiated energy in those directions.
This principle is used in this work to compute the mean and
variance of the travel time caused by changes in the source
location.

3. An Isotropic Source in an Acoustic Medium

[15] In this section we consider the simplest case of a
displacement of an isotropic source in an acoustic medium.
We assume that the propagation of the waves from the
source to the first scatterer along each path can be described
by the Green’s function for a homogeneous medium. For an
isotropic source at the origin with source spectrum S(w), the
waves that propagate to the first scatterer along each path
are thus given by

u rð Þ ¼ � eikr

4pr
S wð Þ : ð10Þ

[16] When the scatterers in the medium are distributed
homogeneously, the travel time perturbation due to a source
displacement d for each trajectory is given by (9) and the
mean travel time perturbation (5) is given by

th i ¼
�
R R

� eikr

4pr

����
����
2
1

v
r̂ � dð Þ S wð Þj j2dWdw

R R
� eikr

4pr

����
����
2

S wð Þj j2dWdw
; ð11Þ

where
R
� � �dW denotes the angular integration over all

outgoing directions,
R
� � �dw denotes an integration over

frequency, and r is the distance to the first scatterer in each
direction. When the scatterers are distributed homoge-
neously, this distance is on average the same for each
direction, and expression (11) can be rewritten as

th i ¼
�
R
r̂ � dð ÞdW

R
S wð Þj j2dw

4pv
R
S wð Þj j2dw

: ð12Þ

The frequency integrals cancel so that

th i ¼ � 1

4pv

Z
r̂ � dð ÞdW : ð13Þ

The integrand is an odd function of the location r̂ on the unit
sphere. Since we integrate over the full unit sphere this
integral vanishes:

th i ¼ 0 : ð14Þ

Physically this reflects the fact that as the source location is
moved, some paths become longer, while others become
shorter, see Figure 1. On average, the associated imprint on
the travel time is zero.
[17] Since the mean travel time perturbation vanishes,

st
2 = ht2i � hti2 = ht2i. This quantity can be computed
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using the same reasoning that led to (13), the only
difference being that t = �v�1 r̂ � dð Þ needs to be replaced
by t2 = v�2 r̂ � dð Þ2, this gives

s2t ¼
1

4pv2

Z
r̂ � dð Þ2dW : ð15Þ

Expression (15) is most easily evaluated by using

r̂ ¼
cosj sin q
sinj sin q
cos q

0
@

1
A ; ð16Þ

with q and j the colatitude and longitude used in a system
of spherical coordinates. Aligning the z axis of the
integration variable with the source displacement d reduces
the angular integral in (15) to d2

R
cos2 qdW = 4pd2/3, and

hence

s2t ¼
1

3

d2

v2
: ð17Þ

[18] Using coda wave interferometry, we can use equation
(6) to infer st

2 from the changes in the waveform. Then,
from (17), we can infer the magnitude d of the source
displacement, but not the direction of the source displace-
ment. Expression (17) was used by Snieder and Hagerty
[2004] to estimate the temporal change in the point of
excitation of volcanic tremors in Arenal Volcano, Costa
Rica.
[19] The change in the arrival time of the first arriving

wave constrains t̂ � d
� 


, with t̂ the unit vector in the takeoff
direction of a ray at the source that propagates directly to the
receiver. The first arriving waves and the later arriving
waves thus impose complementary information on the
perturbation of the source position by constraining t̂ � d

� 

and d, respectively.

4. A Point Force in an Elastic Medium

[20] Let us now consider the displacement of a point force
in an elastic medium. The far-field displacement due to a
point force F at the origin in a homogeneous medium given
by Aki and Richards [2002]:

u ¼ eikar

4pra2r
r̂ r̂ � Fð Þ þ eikbr

4prb2r
F� r̂ r̂ � Fð Þð Þ ; ð18Þ

where a and b are the P and S velocities, respectively, while
the wave numbers are given by ka = w/a and kb = w/b. For
an arbitrary source spectrum S(w), expression (18) should be
multiplied with S(w). For a source of finite spatial extent the
source spectra of P and S waves may be different. In that
case, the radiation patterns should also be corrected for a
finite source size. Here we limit ourselves to sources with
a spatial extent much smaller than a wavelength, such a
source can be treated as a point source. This entails a
limitation to weak events. In that case, S(w) is the Fourier
transform of the excitation, and this term is the same for P
and S waves, so using the same reasoning that led to (13),
we conclude that the source spectrum cancels. For this

reason we suppress the presence of the source spectrum
S(w) altogether.
[21] When the source is displaced over a distance d, the

perturbation of the arrival time for the P waves is given by
�a�1 r̂ � dð Þ, while the perturbation of the arrival of the S
waves is given by �b�1 r̂ � dð Þ. In the averages (5) and (7),
the averages are taken with the intensities of each path as
weight function. Since the P waves and the S waves can be
considered to be different paths, the mean travel time
perturbation is given by

th i ¼
�
R eikar

4pra2r
r̂ r̂ � Fð Þ

����
����
2
1

a
r̂ � dð ÞdW�

R eikbr

4prb2r
F� r̂ r̂ � Fð Þð Þ

����
����
2
1

b
r̂ � dð ÞdW

R eikar

4pra2r
r̂ r̂ � Fð Þ

����
����
2

dWþ
R eikbr

4prb2r
F� r̂ r̂ � Fð Þð Þ

����
����
2

dW

:

ð19Þ

Expression (19) can be simplified with the following
identities: r̂ r̂ � Fð Þj j2 = r̂ � r̂ð Þ2 r̂ � Fð Þ2 = r̂ � Fð Þ2 and
F �ðj r̂ r̂ � Fð ÞÞj2 = F2 � 2 r̂ � Fð Þ r̂ � Fð Þ þ r̂ � r̂ð Þ r̂ � Fð Þ2 =

F2 � r̂ � Fð Þ2. Using these identities gives

th i ¼
�
R 1

a4
r̂ � Fð Þ21

a
r̂ � dð ÞdW�

R 1

b4
F2 � r̂ � Fð Þ2

� �2 1

b
r̂ � dð ÞdW

R 1

a4
r̂ � Fð Þ2dWþ

R 1

b4
F2 � r̂ � Fð Þ2

� �
dW

:

ð20Þ

Both integrals in the numerator vanish because the integrands
are odd functions of r̂ and the integration is carried out over
the full unit sphere; therefore hti = 0.
[22] The variance in the travel time can be computed by

replacing �a�1 r̂ � dð Þ in the numerator by a�2 r̂ � dð Þ2 and
�b�1 r̂ � dð Þ by b�2 r̂ � dð Þ2. This gives

s2t ¼

R 1

a6
r̂ � Fð Þ2 r̂ � dð Þ2dWþ

R 1

b6
F2 � r̂ � Fð Þ2

� �2

r̂ � dð Þ2dW

R 1

a4
r̂ � Fð Þ2dWþ

R 1

b4
F2 � r̂ � Fð Þ2

� �
dW

;

ð21Þ

or, equivalently,

s2t ¼

1

a6
� 1

b6

� �R
r̂ � Fð Þ2 r̂ � dð Þ2dWþ F2

b6
R
r̂ � dð Þ2dW

1

a4
� 1

b4

� �R
r̂ � Fð Þ2dWþ F2

b4
R
dW

: ð22Þ

The integrations over the unit sphere can be carried out
using representation (16) for r̂. It is convenient to align the z
axis with the point force F, so that r̂ � Fð Þ = F cos q. For that
coordinate system, the first integral in the numerator is
given byZ

r̂ � Fð Þ2 r̂ � dð Þ2dW ¼ F2d2x

Z 2p

0

Z p

0

sin2 q cos2 j cos2 q sin qdqdj

þ F2d2y

Z 2p

0

Z p

0

sin2 q sin2 j cos2 q sin qdqdj

þ F2d2z

Z 2p

0

Z p

0

cos2 q cos2 q sin qdqdj

¼ 4p
15

F2 d2x þ d2y
� �

þ 4p
5
F2d2z : ð23Þ
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Equation (23) holds for the special case of a coordinate
system that is aligned with the point force. The last line can
be rewritten as

4p
15

F2 d2x þ d2y
� �

þ 4p
5
F2d2z ¼

4p
15

F2 d2x þ d2y þ d2z
� �

þ 4p
1

5
� 1

15

� �
F2d2z

¼ 4p
15

F2d2 þ 8p
15

2

F � dð Þ2 : ð24Þ

The last identity is invariant under unitary coordinate
transformations such as rotations; therefore expression (24)
holds in any coordinate system.
[23] Applying a similar analysis to all terms in (22) gives,

after dividing by F2 and some rearrangement,

s2t ¼

1

a6
þ 4

b6

� �
d2 � 2

1

b6
� 1

a6

� �
F̂ � d
� 
2

5
1

a4
þ 2

b4

� � ; ð25Þ

where F̂ � F/F is the unit vector in the direction of the point
force.
[24] Note that for the elastic wave generated by a point

force, hst2i depends on not just d2 but also on F̂ � d
� 


, the
projection of the source displacement along the point
force. Therefore the direction of the point force is needed
in order to relate the observed value of hst2i to the source
displacement. This contrasts with the acoustic case treated
in section 3 where the variance of the travel time was
dependent on d only.
[25] For a Poisson medium (a =

ffiffiffi
3

p
b), expression (24)

results in

s2t �
d2

b2
0:382� 0:182 F̂ � d̂

� �2
� �

ð26Þ

(Poisson medium). Note that the last term is rewritten in
terms of the unit vector d̂. The first term gives the
contribution that is direction-independent. For the acoustic
case the corresponding result (17) is hst2i = d2/3v3 �
0.333d2/v2, which is close to the coefficient 0.382 in (26)
when the shear velocity b is equated to the velocity v in the
acoustic medium. There is a simple reason for this. In
expression (25) the velocities a and b are raised to a fairly
high negative power (�4 and �6, respectively). Since b <
a, this leads to a dominance of the terms that are dependent
on b. In fact, when the a-dependent terms in (25) are
ignored altogether, expression (25) reduces to

s2t �
d2

b2
0:4� 0:2 F̂ � d̂

� �2
� �

ð27Þ

(a ignored). This crude approximation leads to a result that
is close to (26) for a Poisson medium. Physically, this
happens because a point force excites much stronger S
waves than P waves. Since the travel time averages are
weighted with the intensity of both wave types, the
contribution of the shear waves dominates. The dominance
of the S wave energy over the P wave energy has been noted

before in different contexts [Aki and Chouet, 1975; Weaver,
1982; Papanicolaou and Ryzhik, 1999; Trégourès and van
Tiggelen, 2002; Snieder, 2002].
[26] The analysis used in this paper is slightly over-

simplified because it does not account for the different
scattering cross sections for incoming P waves and incom-
ing S waves. According to Wu and Aki [1985] these cross
sections have the following dependence on the P and S
velocities: gP!P � 1/a4, gP!S � 1/b4, gS!P � 1/a4, and
gS!S � 1/b4. For an incoming P wave, the total scattering
cross section is proportional to gP!P + gP!S. Since these
terms depend on the fourth power of the velocities and
because b < a, gP!P + gP!S � 1/b4, up to a relative error of
the order (b/a)4 � 0.1. For the same reason, the total
scattering cross section for an incoming S wave is given
by gS!P + gS!S, which also is approximately proportional
to 1/b4. This means that for both incoming P waves and
incoming S waves the outgoing S wave dominates and for
each trajectory gives a common factor 1/b4 that cancels in
the numerator and denominator of expression (20) and
subsequent expression for the mean travel time perturbation
and its variance.
[27] In some situations one can eliminate the dependence

of the variance of the travel time on the direction of the
source displacement. As an example, consider a vibrator in
a borehole that vibrates in a direction perpendicular to the
borehole. The relative location of different deployments
of the vibrator depends only on the distance along the
borehole. In that case the force F and the source displace-
ment d are perpendicular, and equation (25) reduces to

s2t ¼

1

a6
þ 4

b6

� �

5
1

a4
þ 2

b4

� � d2 F ? dð Þ: ð28Þ

Of course, one may question the validity of the employed
model for a source in a borehole since the presence of the
borehole and the properties of its walls modify the radiation
of elastic waves.

5. A Moment Tensor Source in an Elastic
Medium

[28] In this section we consider the displacement caused
by a moment tensor source in an elastic medium. In
section 5.1 we consider the case of a double couple, and in
section 5.2 we consider that of an explosive source. Accord-
ing to Aki and Richards [2002], the displacement in an
elastic medium due to a moment tensor sourceM is given by

ui rð Þ ¼ � iweikar

4pra3r
r̂ir̂jr̂kMjk �

iweikbr

4prb3r
r̂ir̂jr̂kMjk � dijr̂kMjk

� 

:

ð29Þ

Following expression (5), the travel time perturbation for
each trajectory is weighted by the intensity for that trajectory.
The intensity corresponding to the different terms in (29)

can be computed using the identities r̂ir̂jr̂kMjk

� 
2
=

r̂ � r̂ð Þ2 r̂r̂ : Mð Þ2¼ r̂r̂ : Mð Þ2, and r̂ir̂jr̂kMjk � dijr̂kMjk

� 

2 =

r̂ �Mð Þ2� r̂r̂ : Mð Þ2. By analogy with expression (20) the
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mean travel time change due to a perturbation d in the source
location is given by

th i ¼
�
R 1

a6
r̂r̂ : Mð Þ21

a
r̂ � dð ÞdW�

R 1

b6
r̂ �Mð Þ2� r̂r̂ : Mð Þ2

� � 1

b
r̂ � dð ÞdW

R 1

a6
r̂r̂ : Mð Þ2dWþ

R 1

b6
r̂ �Mð Þ2� r̂r̂ : Mð Þ2

� �
dW

:

ð30Þ

Just as is the integral (20), the integrand is an odd function of
r̂, and the integral vanishes upon integration over the unit
sphere so the mean travel time perturbation vanishes: hti = 0.
Using the same reasoning as that used for (21), the variance of
the travel time is given by

s2t ¼

R 1

a8
r̂r̂ : Mð Þ2 r̂ � dð Þ2dWþ

R 1

b8
r̂ �Mð Þ2� r̂r̂ : Mð Þ2

� �
r̂ � dð Þ2dW

R 1

a6
r̂r̂ : Mð Þ2dWþ

R 1

b6
r̂ �Mð Þ2� r̂r̂ : Mð Þ2

� �
dW

:

ð31Þ

The integration over the unit sphere is most easily carried out
when a simplified form of the moment tensor is assumed.

5.1. A Double-Couple Source

[29] In this section we analyze the variance of the travel
time for a double-couple source. In the integration we use a
coordinate system with the z axis perpendicular to the
double couple. In that coordinate system the moment tensor
is given by

M ¼
0 M 0

M 0 0

0 0 0

0
@

1
A : ð32Þ

With representation (16) for the unit vector r̂, the
contractions that appear in (31) are given by

r̂ �Mð Þ2¼ M2 sin2 q ; ð33Þ

r̂r̂ : Mð Þ2¼ 4M2 sin4 q sin2 j cos2 j : ð34Þ

With these representations the angular integrals that appear
in (31) can be carried out. The resulting integrals are tedious
and are given by

Z
r̂ �Mð Þ2dW ¼ 8p

3
M2 ; ð35Þ

Z
r̂r̂ : Mð Þ2dW ¼ 16p

15
M2 ; ð36Þ

Z
r̂ �Mð Þ2 r̂ � dð Þ2dW ¼ 16p

15
M2 d2x þ d2y

� �
þ 8p

15
M2d2z ; ð37Þ

Z
r̂r̂ : Mð Þ2 r̂ � dð Þ2dW ¼ 16p

35
M2 d2x þ d2y

� �
þ 16p

105
M2d2z : ð38Þ

Inserting these results in expression (33) and using the
identity dx

2 + dy
2 = d2 � dz

2 gives after a rearrangement of
terms

s2t ¼

6

a8
þ 7

b8

� �
d2 � 4

a8
þ 3

b8

� �
d2z

7
2

a6
þ 3

b6

� � : ð39Þ

Expression (39) is not quite satisfactory yet because it does
not contain the moment tensor in a covariant form. (The
only information of the orientation of the double couple is
captured in the choice of the z direction, which is orthogonal
to the double couple.) A covariant formulation can be
obtained by defining the following norm of the moment
tensor:

Mk k2� M : Mð Þ : ð40Þ

Since this quantity is the double contraction of a tensor of
rank two, it is a tensor of rank zero; hence Mk k is invariant
for unitary coordinate transforms. With this norm we can
define a normalized moment tensor

M̂ � M

Mk k : ð41Þ

Since M is a tensor of rank two and Mk k is a scalar, M̂ is a
tensor of rank two. For the moment tensor (32),

M̂ � d
� 
2¼ 1

2
d2 � d2z
� 


: ð42Þ

This result can be used to eliminate dz from expression (39)
so that

s2t ¼

2

a8
þ 4

b8

� �
d2 þ 2

4

a8
þ 3

b8

� �
M̂ � d
� 
2

7
2

a6
þ 3

b6

� � : ð43Þ

Expression (43) is invariant for rotations of the coordinate
system and can therefore be applied to a double couple with
an arbitrary orientation.
[30] Just as with expression (25) for a point force, the

variance of the travel time depends on the magnitude d of
the source displacement as well as on the direction of the
source displacement. Therefore it is necessary to know
the orientation of the double couple in order to relate the
variance in the travel time perturbation as inferred from
coda wave interferometry to the source displacement.
[31] For a Poisson medium

s2t �
d2

b2
0:187þ 0:283 M̂ � d̂

� �2
� �

: ð44Þ

(Poisson medium). A comparison with expression (26) for a
point force shows that the ratio of the isotropic term to the
direction-dependent term is, relatively speaking, smaller for
the double couple than for the point force. The reason is that
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for the double couple the angular variation in the radiation
pattern is larger than that for a point force.
[32] Equation (43) contains terms that depend on the P

velocity and those that depend on the S velocity. When the
contributions of the P waves are ignored altogether, the
variance of the travel time change is given by

s2t �
d2

b2
0:190þ 0:285 M̂ � d̂

� �2
� �

ð45Þ

(a ignored). Note that this result is close to the variance of
the travel time for a Poisson medium given in (44). For a
double couple the radiated energy varies as b�6, whereas for
a point force it varies as b�4. For this reason the dominance
of the S waves in coda wave interferometry is even more
pronounced for a double couple than for a point force.
[33] As a special case, let us consider the application of

this theory to the relative location of aftershocks on a fault.
In that case, the relative source location d lies in the fault
plane. In the coordinate system used in expression (39), the
x, y plane is aligned with the fault plane and the component
dz perpendicular to the fault plane is equal to zero so that

s2t ¼

6

a8
þ 7

b8

� �

7
2

a6
þ 3

b6

� � d2 ð46Þ

(displacement in fault plane). Just as in expression (28) the
variance of the travel time perturbation is now related to the
absolute value of the source displacement only. Note that
when the P wave terms in expression (46) are ignored, that
expression is given by st

2 = d2/3b2. Expression (46) is equal
to equation (17) for an explosive source in an acoustic
medium. This resemblance is, however, fortuitous.

5.2. An Explosive Source

[34] For an explosive source, the moment tensor is given
by

M ¼
M 0 0

0 M 0

0 0 M

0
@

1
A : ð47Þ

For such a moment tensor r̂r̂ : Mð Þ2¼ M2r̂ir̂jdij ¼
M 2 r̂ � r̂ð Þ2¼ M2, and r̂ �Mð Þ2¼ r̂ � r̂ð Þ2M 2 ¼ M 2, so that
(31) is given by

s2t ¼

R 1

a8
r̂ � dð Þ2dW

R 1

a6
dW

: ð48Þ

Note that the terms that depend on the shear velocity b have
disappeared; physically, this is because an explosive source
does not excite shear waves. The angular integration can be
carried out in the same way as in section 3, so that

s2t ¼
1

3

d2

a2
: ð49Þ

This result is identical to expression (17) for acoustic waves.

6. Application to Relative Source Location

[35] As shown in the previous sections, the cross corre-
lation of the coda waves carries information of the source

displacement. The cross correlation (3) can be applied to a
number of nonoverlapping time windows in the seismic
coda. Using expression (6), each of these windows gives an
independent estimate of the variance st

2.
[36] Let us first consider the character of the constraints on

the source displacement that follow from coda wave inter-
ferometry. For an explosive source in either an acoustic
or elastic medium, expressions (17) and (49) state that
the source displacement is located on a sphere with radius
d2/3v2, with v the velocity of acoustic waves for an acoustic
medium and the P wave velocity for an elastic medium,
respectively.
[37] For a point force in an elastic medium the constraint

on the source location is slightly more complicated. It is
possible to decompose the source displacement into a
component parallel to the point force and a component
perpendicular to the point force:

d ¼ d?F þ dkF F̂ : ð50Þ

With this decomposition, equation (25) can be written as

s2t ¼

1

a6
þ 4

b6

� �
d2?F þ 3

a6
þ 2

b6

� �
d2kF

5
1

a4
þ 2

b4

� � : ð51Þ

Expression (51) states the source displacement is located on
an ellipsoid whose symmetry axis is aligned with the point
force.
[38] For a double couple the source displacement can be

decomposed in a component dkfault parallel to the fault and a
component d?fault perpendicular to the fault. Following
equation (39), the corresponding constraint on the source
displacement is given by

s2t ¼

6

a8
þ 7

b8

� �
d2kfault þ 2

1

a8
þ 2

b8

� �
d2?fault

7
2

a6
þ 3

b6

� � : ð52Þ

Expression (52) states that the source displacement is
located on an ellipsoid with a symmetry axis perpendicular
to the fault plane. In the special case of aftershocks that
occur on the same fault, the source displacement is in
general in the plane of the fault. In that case the source
displacement is constrained to be located on a circle in the
fault plane:

s2t ¼

6

a8
þ 7

b8

� �

7
2

a6
þ 3

b6

� � d2kfault : ð53Þ

[39] In all these situations the source displacement is
constrained by coda wave interferometry to be located on
a sphere, an ellipsoid, or a circle. This constraint can be
used in addition to constraints on the relative source
location as inferred from the differential arrival times for
the P and S waves. Coda wave interferometry thus adds a
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geometrical constraint to the relative source locations of
multiple events.

7. Validation With Synthetic Seismograms

[40] In order to validate the theory we present an exper-
iment where synthetic seismograms are computed with an
acoustic finite difference algorithm. The two-dimensional
computational grid is 20 km by 20 km with a grid size of
20 m. The source emits a Ricker wavelet with a dominant
frequency of 8 Hz. The density is constant, while the
velocity model consists of the superposition of a constant
background velocity of 6000 m/s with a realization of
a Gaussian random medium with a correlation length of
1000 m and a standard deviation of 1500 m/s. These
fluctuations constitute a perturbation of 25% and lead to
strong multiple scattering.
[41] Synthetic seismograms for one receiver at two source

positions that are 160 m apart are shown in Figure 2. The
amplitude of the direct wave is small compared to the coda,
and the coda is enriched in high frequencies compared to
the direct wave; this is due to the strong scattering. Figure 2
insets show the direct arrival and part of the coda. The first
part of the waveforms is similar with a small lag between
the waveforms; this time lag forms the basis of the double-
difference method.
[42] Here we use the coda to extract the separation in the

source position by computing the cross correlation (3) using
a time window with a length of 1.6 s. We compute the cross
correlation as a function of time by sliding the time window
along the waveforms. The variance in the travel time due
to the source displacement follows from expression (6).
The source displacement follows from the generalization

of equation (17) to two spatial dimensions where it is given
by

s2t ¼
1

2

d2

v2
: ð54Þ

[43] The maximum of the normalized cross correlation of
the seismograms recorded at one station for two nearby
source locations is shown in Figure 3 as a function of the
center time of the time window. Figure 3 (top) shows the
two seismograms. The horizontal bar indicates the size of
the time window used to compute the cross correlation. The
maximum of the cross correlation (Rmax) for each time
window is shown in Figure 3 (middle). The high values
of Rmax at early times correspond to the high degree of
similarity in the first arrivals that indicates that the source
mechanism for the two events is similar. For later times,
around t = 4 s, Rmax decreases as the time window moves
into the coda. The computed distance is shown in Figure 3
(bottom). The dashed line indicates the actual source
displacement of 160 m.
[44] For center times later than about 4 s the source

separation inferred from the coda fluctuates around the
actual source separation of 160 m. For earlier times the
correlation of the waveforms leads to an underestimation of
the source separation. The reason for this is that for early
times the scattered waves did not have the time to propagate
in all directions as indicated in Figure 1, this means that for
these times the employed model where the scattered waves
are integrated over all takeoff angles is not accurate.
[45] The source separation can be computed for nonover-

lapping time windows. This gives independent estimates of
the source separation that provide a consistency check for

Figure 2. Synthetic seismograms for two source locations recorded at the same receiver. The top and
bottom inserts show close-ups of the direct arrivals and a section of the coda, respectively.
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the employed method. These independent estimates can be
used to obtain an error estimate of the inferred source
separation. The method to compute the source separation
from the coda waves is based on the cross correlation of the
waveforms only. It is not necessary to know the scattering
properties of the medium.
[46] The synthetics used in Figure 3 are noise-free.

Nevertheless, the estimated source separation shown in
Figure 3 (bottom) fluctuates as a function of the center time
of the employed time window. As mentioned in section 2,
coda wave interferometry ignores the contribution to the
cross correlation that is due to waves that propagate along
different trajectories. The associated cross terms lead to the
fluctuations shown in Figure 3 (bottom). Snieder [2004a]
show that the relative contribution of these cross terms is of
the order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcorr=tw

p
, where 2tw is the employed window

length and tcorr is the width of the autocorrelation of the
data. Choosing a larger window length reduces these
fluctuations at the expense of having fewer independent
estimates of the source separation.

8. Application to Earthquake Doublets on the
Hayward Fault

[47] We apply the theory to measure the source separation
for earthquakes on the Hayward fault, California, using
coda waves recorded by the Northern California Seismic
Network [Waldhauser and Ellsworth, 2000]. They con-
structed an algorithm (double-difference algorithm) that
inverts for hypocenter locations using absolute and relative
travel time measurements. The double-difference algorithm
minimizes residuals between observed and theoretical travel

times (double differences) for a large data set. We compare
our results to the results of this inversion.
[48] We filtered the waveforms with a band-pass Butter-

worth filter, filtering out the DC component and frequencies
greater than 5 Hz. This decreases the dominant frequency to
an average of 3 Hz. We align the seismograms in time so
that the first arrivals coincide. This affects the lag of the
cross correlation but not its maximum Rmax. Figure 4 shows
two events that occurred close together and were recorded at
the same station.
[49] In Figure 4 one of the two seismograms is scaled

because of a difference in magnitude between the two
events. As for the synthetics of Figure 2, the first arrivals
are similar. This implies that the source mechanism for both
events is similar. There is a magnitude difference because
the earthquakes are of different magnitude, but this does not
affect the value of the normalized cross correlation.
[50] We choose the time window for the cross correlation

(3) to be 10 s. A pair of seismograms for the events 238295
and 242003 recorded at the same station is shown in
Figure 5 (top). Figure 5 (middle) shows the maximum Rmax

of the cross correlation as a function of the center time of the
time window. In Figure 4 the noise is appreciable because
the waves arriving before the first direct P wave are
significant. Random noise added to the waveforms reduces
the cross correlation and therefore leads to an overestima-
tion of the source separation. Appendix B summarizes the
treatment of H. Douma and R. Snieder (The imprint of
noise on the cross correlation of time series, with applica-
tions to coda wave interferometry, submitted to Geophysical
Journal International, 2004, hereinafter referred to as
Douma and Snieder, submitted manuscript, 2004), in which

Figure 3. (middle) Maximum of the cross correlation and (bottom) calculated distance for the
seismograms in Figure 2 as a function of the center time of the time window used for computing the cross
correlation. (top) Two seismograms. The horizontal bar indicates the size of the time window in which we
compute the cross correlation. The dashed line in the bottom insert gives the true source separation.
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it is shown that the bias in the cross correlation due to
random noise can be corrected for by using the corrected
cross correlation coefficient that is given by

Rcorr ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n21
� �
u21
� �

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n22
� �
u22
� �

s
: ð55Þ

In expression (55), R is the normalized correlation
coefficient defined in expression (3), hn1,22 i gives the
average noise energy in the unperturbed and perturbed
waves, while hu1,22 i gives the average energy of the
unperturbed and perturbed waves employed in the time
window. We show in Figure B1 of Appendix B that with
noise-contaminated data it is crucial to correct the
correlation coefficient for the bias introduced by random
noise.
[51] We correct for random noise using expression (55).

The variance of the travel time perturbation due to the
source perturbation then follows from expression (6). As-
suming that the events are taking place on the same fault
plane we then use equation (46) to compute the source
separation. In Figure 5 (bottom) we show the computed
distance between the two events using the values b =
3320 m/s, and a = 5750 m/s that were also used by
Waldhauser and Ellsworth [2002]. The dashed lines indi-
cate the event separation obtained by Waldhauser and
Ellsworth [2002] plus and minus one standard deviation.
For center times smaller than about 40 s the distance
calculated from coda waves agrees with the double-
difference distance. For later times the distance computed
from the coda waves overestimates the event separation.

The reason for this is that for these late times the coda
waves are so weak that the waveforms are dominated by
random noise. When the noise is uncorrelated the cross
correlation of the waveforms vanishes, and the variance of
the travel time perturbation is according to expression (6)
given by st

2 = 2/w2. This variance depends on the frequency
content only and is not related in any way to the event
separation. For earlier times when the signal-to-noise ratio is
not too low, the event separation computed from the coda
waves agrees well with the event separation computed with
the double-difference method.
[52] Note that the event separation shown in Figure 5

(bottom) is determined from data from a single station. By
applying the method to event pairs recorded at several
stations one obtains independent estimates of the event
separation that can be used to estimate the uncertainty in
the event separation. For events 238295 and 242003 that are
shown in Figure 5, the event separation computed from
waveforms recorded at the stations CAI, CBW, CMC, and
CSP are shown in Figure 6 (top). We computed the mean
event separation and its variance by averaging the event
separation obtained from several nonoverlapping time win-
dows at a single station, and by averaging over the event
separation obtained from measurements at different stations.
This leads to the average event separation and variance
shown in Table 1. Table 1 gives the event separation
and variance obtained with the double-difference method
[Waldhauser and Ellsworth, 2002].
[53] In Figure 6 and in Table 1 this estimate of the event

separation and its variance is shown for three different event
pairs. The event separation obtained from coda wave
interferometry and from the double-difference method agree

Figure 4. Seismograms from an earthquake doublet recorded at the same station. The top and bottom
inserts show close-ups of the direct arrivals and a section of the coda, respectively. One of the two
seismograms is scaled because of a difference in magnitude between the events.
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within one standard deviation. It is not clear at this point
which of the methods provides the most accurate estimate of
the event separation.

9. Discussion

[54] The method proposed in this paper makes it possible
to compute the distance between seismic events with the
same source mechanism using the seismic coda recorded for
the two events at a single station. The theory is based on the
assumption that the waves radiate from the source in all
possible directions toward the scatterers that generate the
coda. Note that the scattering properties of the medium do
not need to be known; there is no need to prescribe the
scattering mean free path or other parameters that charac-
terize the scattering process.
[55] The theory presented here is based on the assumption

that the scatterer density is constant in all directions from
the source. In practice this assumption may be violated.
Suppose, for example, that the source is displaced toward a
region that is enriched in scatterers. The travel times along
the trajectories to that region will decrease. The averages
in the expressions (5) and (7) are weighted by the intensity.
The trajectories to the region with strong scattering region
dominate this average, which for this particular example
leads to a negative mean travel time change. This would be
visible as a nonzero phase shift of the coda waves. Neither
the synthetic waveforms of Figure 2 nor the data of Figure 4
display such a phase shift.
[56] The derivation used here is based on a number of

simplifications. We have assumed that the velocity is
isotropic. If this is not the case expression (9) must be
modified to include the dependence of the seismic velocity

on the takeoff angle. We have ignored reflections from the
free surface. When mode conversions are ignored, the free
surface does not affect our results, because it simply creates
a mirror image of the scattering medium above the free
surface. Mode conversions at the free surface, however,
would change the relative contributions of the P and S
waves. As shown by the derivation of section 5.1 for a
moment tensor, the final result is virtually independent of
the P waves that are radiated by the source. Furthermore, the
coda is saturated in S waves [Aki and Chouet, 1975;Weaver,
1982; Papanicolaou and Ryzhik, 1999; Trégourès and van
Tiggelen, 2002; Snieder, 2002]. This means that P-to-S
conversions at the free surface are not important and the
effect of mode conversions by the free surface is small.
[57] Another assumption that we use is that the source

radiates energy with the same radiation pattern as a source
in a locally homogeneous medium. This condition is vio-
lated, for example, when the source excites strong fault zone
guided waves. It is difficult to estimate the imprint of near-
source heterogeneity, especially when this heterogeneity is
unknown. Our theory is, however, consistent with the
commonly used assumption that the radiation pattern is
determined by the properties of a source in a locally
homogeneous medium [Aki and Richards, 2002].
[58] In the derivation of expression (3) a second-order

Taylor approximation of the cross correlation in the travel
time perturbation has been used [Snieder, 2002]. This
condition is satisfied when wst < 1. Physically this condi-
tion means that the source separation must be smaller than a
wavelength. This is the parameter range where our tech-
nique is most useful, because the double-difference method
is most effective when the event separation is comparable to
a wavelength or larger.

Figure 5. (top) Seismograms of events 23895 and 242003 recorded at the station CAI. (middle) Noise-
corrected cross correlation as a function of the center time of the time window. (bottom) Estimated source
separation as a function of the center time shown by the solid line. The dashed lines indicate the relative
distance obtained by Waldhauser and Ellsworth [2002] plus or minus one standard deviation.
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[59] Our technique breaks down when the event separa-
tion is too large compared to a wavelength. When the source
separation is very small compared to a wavelength, it is in
practice difficult to measure the source separation accurately
from the changes in the waveforms. For this reason it
may be useful to frequency filter the data before applying
the technique proposed here, in order to ensure that the
dominant wavelength of the filtered data matches the event
separation.
[60] The correlation measurement that provides the event

separation can be applied to several independent time
windows in the coda. The independent estimates of the
source separation that are thus obtained provide a consis-
tency check on the employed method, and also provide a
basis to obtain error estimates of the source separation. The
number of independent time windows that can be used
depends on the noise level because the coda ceases to carry
useful information when it has decayed to levels compara-
ble to the ambient noise. It is important to apply the noise
correction (55) for time intervals where the noise level is
appreciable compared to the coda. Since the method relies
on data from a single station only, it is possible to obtain
additional independent estimates of the event separation by
using waveforms from more seismological stations.

[61] In the double-difference method, the relative location
of events is obtained by combining the travel time differ-
ences for different event pairs recorded at many stations.
Coda wave interferometry provides a constraint on the event
separation using the waveforms of one event pair only
recorded at a single station. This makes it possible to use
this technique to obtain a rapid estimate of the event
separation. Our technique relies on the principle that the
waves that constitute the coda are radiated away from the
source in all possible directions. For this reason information
about the direction of the event separation cannot be
obtained from our method.
[62] Coda wave interferometry, as proposed here, pro-

vides additional constraints on the source separation that

Table 1. Average Distance Obtained From Coda Wave Inter-

ferometry (CWI) and Standard Deviation for Three Different Event

Pairs and the Distances and Standard Deviations Obtained From

the Double-Difference Method (DD)

Pair Number Distance From CWI Distance From DD

1 124 m ± 19 m 128 m ± 29 m
2 63 m ± 11 m 107 m ± 29 m
3 68 m ± 14 m 77 m ± 29 m

Figure 6. Calculated distances for three different event pairs: (top) pair 1, events 238295 and 242003;
(middle) pair 2, events 242003 and 242020; and (bottom) pair 3 events 402093 and 402094. All three
event pairs were recorded at stations CAI, CBW, CMC, and CSP. The dashed lines give the event
separation obtained from the double-difference method [Waldhauser and Ellsworth, 2002] plus or minus
one standard deviation.
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can be used in addition to the constraints imposed by using
the double-difference method. When N events are located in
a region of space comparable to a wavelength, our tech-
nique in principle gives N(N � 1)/2 constraints on the
distance between event pairs that can be used as a basis of a
triangulation technique to determine the relative event
locations [Menke, 1999; Waldhauser and Ellsworth,
2000]. Such a procedure will be most effective when it
is combined with constraints obtained from the double-
difference method.

Appendix A: Relative Importance of the
Travel Time Change

[63] When the source location is displaced over a distance
d, the wave field u changes because of (1) the change in the
arrival time, (2) a change in the geometrical spreading, and
(3) a change in the energy radiated by the source or a
change in the scattering amplitude. In this appendix we
estimate the relative contribution of these different factors
using an analysis in the frequency domain.
[64] The phase of the wave that travels over a distance r

from a source to a scatterer is accounted for by a term exp
(ik � r). When the source is displaced over a distance d, this
introduces an additional phase shift that is of the order
exp(�ikd cos q), where q measures the angle between the
takeoff direction of the ray and the source displacement.
When the source displacement is much smaller than the
wavelength, this phase change is given by exp(�ikd cos q)�
1 � ikd cos q. Using that k = 2p/l, this means that the
relative change in the wave field due to the change in the
travel time is to first order given by

Du=uð Þphase � d=l : ðA1Þ

[65] The geometric spreading is in three dimensions given
by 1/r. When the source is displaced over a distance d, the
geometrical spreading changes into 1/(r � d cos q). To first
order in d, the perturbed geometrical spreading is given by
(1/r) � (1 + d cos q/r), and the relative change in the wave
field due to a change in geometrical spreading is given by

Du=uð Þspreading � d=l ; ðA2Þ

where l is the mean free path, a measure of the average
distance traveled to a scatterer.
[66] A change in the source position leads to a change in

the takeoff direction of each ray and also to a change in the
scattering angle at each scatterer. For both cases, the change
in the angle is given by Dj = d/r. Let us assume that the
source radiates with a radiation pattern sin(mj) or cos(mj)
and that the scattering amplitude has a similar dependence
on the scattering angle. In that case the relative change in
the radiated or scattered waves is of the order mDj. Using
that the average distance from the source to a scatterer is
given by the mean free path, this gives the following
contribution to the change in the waves due to a change
in the source position:

Du=uð Þangles � md=l : ðA3Þ

For a point force or a moment tensor, jmj � 2 [Aki and
Richards, 2002]. This property holds as well for elastic

scatterers that are much smaller than a wavelength [Wu and
Aki, 1985]. For larger scatterers the dependence of the
scattering amplitude may depend on larger values of m. In
that case, however, the scattering is predominantly in the
forward direction and the coda will be weak.
[67] This means that the ratio of the change in the wave

due to a change in the arrival time and to other changes is
given by

Du=uð Þphase

Du=uð Þspreading=angles
� l=ml : ðA4Þ

Note that this ratio does not depend on the source
displacement d. The change in the phase dominates when
the mean free path l is much larger than a wavelength. Note
that when this condition is violated, the waves are localized
and clear P and S wave arrivals are not present [van
Tiggelen, 1999]. Since a change in the phase corresponds in
the time domain to a change in the arrival time, this shows
that the change in the arrival time is the dominant change
when the distance to the scatterers as measured by the mean
free path is much larger than the dominant wavelength.

Appendix B: Noise Correction

[68] In this appendix, which follows the treatment of
Douma and Snieder (submitted manuscript, 2004), we
discuss the imprint of random noise on the correlation
coefficient defined in equation (3). In this appendix we
set the lag time equal to zero (ts = 0), but the result is easily
generalized to a nonzero lag time. The measured signal u1(t)
consists of the signal s1(t), which would be measured in the
absence of noise, and the noise n1(t). This means that

u1;2 tð Þ ¼ s1;2 tð Þ þ n1;2 tð Þ : ðB1Þ

For brevity we write the correlation coefficient defined in
expression (3) as

R ¼ u1u2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21
� �

u22
� �q ; ðB2Þ

where the angle brackets denotes the time average over the
employed time window. In this appendix we show how the
noise-contaminated correlation coefficient given above is
related to the corrected correlation coefficient defined as

Rcorr ¼
s1s2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
� �

s22
� �q : ðB3Þ

[69] In the following, we assume that the noise time series
are uncorrelated, and that the signals s1,2(t) are uncorrelated
with the noise:

n1n2h i ¼ nisj
� �

¼ 0 : ðB4Þ

In a given noise realization these time averages are not
exactly equal to zero, but these averages are in general
much smaller than correlated averages such as hn12i. Using
expressions (B1) and (B4), we obtain hs1s2i = hu1u2i �
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hu1n2i � hu2n1i + hn1n2i = hu1u2i. This result can be used in
the numerator of (B3). Furthermore, hu12i = hs12i + 2hs1n1i +
hn12i = hs12i +hn12i. In an experiment, u1 is measured, but s1 is
unknown because the noise is unknown. The last expression
can be used to eliminate hs12i from the denominator of
expression (B3). Using these results and a similar expres-
sion for hs22i gives

Rcorr ¼
u1u2h iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21
� �

� n21
� �� 


u22
� �

� n22
� �� 
q : ðB5Þ

With the definition (B2) this gives expression (55).
[70] For the derivation of the noise correction we assume

that the noise is uncorrelated with the signal. For earthquake
data the noise energy hn1,22 i can be estimated from the
waveforms before the first arrivals, while hu1,22 i is computed
for each time window separately. The uncorrected and
corrected cross correlation for a pair of earthquake wave-
forms is plotted in Figure B1 (middle). The bold line
corresponds to the corrected cross correlation. The uncor-
rected cross correlation is smaller because the noise
decreases the similarity between the two waveforms. In
Figure B1 (bottom) the cross correlation is converted into
distance between the two sources. Again, the bold line
corresponds to the distance computed from the corrected
cross correlation. The distances have almost the same value
for early times because the signal strength is high, and
consequently, the noise level is low. As we move further in
the coda, the signal-to-noise level becomes lower and the
two distances deviate. The corrected distance maintains a
more or less constant value further into the coda.
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