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ABSTRACT

Distributed generation (DG) technologies have promoted interest in alternative

sources of energy for buildings due to their potential to supply heat and power at a

lower cost and emissions compared to centralized generation. Accordingly, we present

an optimization model that determines the mix, capacity, and operational schedule

of DG technologies that minimize economic and environmental costs subject to the

energy demands of a building and to the performance characteristics of generation

and storage technologies.

Modeling the acquisition of discrete technologies requires integer restrictions, while

modeling the variable efficiency of generators (e.g., fuel cells) and the variable temper-

ature of thermal storage introduces nonlinear equality constraints. Thus, our model

is a nonconvex, mixed-integer nonlinear program (MINLP). Given the difficulties as-

sociated with solving nonconvex MINLPs, we present convex underestimation and

linearization techniques to bound and solve the problem. The solutions provided

by our techniques are close to those provided by existing solvers for small problem

instances. However, our methodology offers the possibility to solve larger instances

that exceed the capacity of existing solvers and that are critical to the real-world

application of the model.

Our MINLP models off-design performance characteristics of generation and stor-

age technologies that are simplified or ignored in existing research. The consideration

of these characteristics can be important for applications that require a time-varying

dispatch from the technologies. We demonstrate the impact of ignoring off-design

performance by comparing the solution prescribed by a simpler model with that of

our MINLP for a representative case study. The simpler model overestimates the DG

operational costs and underestimates the optimal DG capacity.
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Our MINLP provides a means of conducting sensitivity analyses to determine

scenarios that are favorable for DG investment. However, the complexity of our

MINLP dictates that large instances of the problem are difficult to solve. Also, for

many scenarios, the optimal design and dispatch does not include DG. Consequently,

significant time and effort could be expended solving instances for which DG is not

economically viable. Thus, we perform a comparative static analysis of the objective

function of our MINLP to derive parametric conditions for which DG is economically

viable.
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NOMENCLATURE

The sets, parameters, and variables referenced throughout the document are listed

alphabetically below. Upper-case letters identify variables or sets, while lower-case

letters identify parameters or set indices. Superscripts and accents differentiate pa-

rameters and variables that use the same base letter. Subscripts distinguish between

elements of a set. Some parameters and variables, which are identified in a given

problem formulation, are only defined for certain elements of sets. The units of each

parameter and variable are provided in brackets after its definition.

Sets

i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of all cost elements

j ∈ J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of all technologies

n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of all months

t ∈ Tn . . . . . . . . . . . . . . . . . . . . . . . . . . . set of all hours in month n

t ∈ T . . . . . . . . . . . . . . . . . . . . . . . . . . . set of all hours (T =
⋃
n Tn)

Parameters

αj . . . . average ambient heat loss of water stored in each technology j [fraction]

γj average exhaust output from each technology j per natural gas input [kg/kWh]

δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . demand time increment [hours]

ε . . . . . . . . . . . . . . . . . . . . . . . . . an arbitrarily small positive quantity

ηmax
j . . . . . . . . . . . maximum electric efficiency of each technology j [fraction]

ηmin
j . . . . . . . . . . . minimum electric efficiency of each technology j [fraction]

xii





ηPj . . . . . . . . . . . . . . . rated electric efficiency of each technology j [fraction]

ηQj . . . . . . . . . . . . . . rated thermal efficiency of each technology j [fraction]

µj . . . . . . . . . . . . . . . . maximum turn-down of each technology j [fraction]

νt . . . . . net-metering rate paid by utility for exported power in hour t [fraction]

σj . . . start-up time for each technology j to reach operating temperature [hours]

τ inj . . . . . . . . . . . . . average temperature of fluid into each technology j [◦C]

τ outj . . . . . . . . . . . average temperature of fluid out of each technology j [◦C]

τmax . . . . . . . . . . . . . . . maximum temperature of water in the system [◦C]

τmin . . . . . . . . . . . . . . . minimum temperature of water in the system [◦C]

ajt . average availability of each technology j based on weather in hour t [fraction]

cj amortized capital and install cost of each technology j [$/kWh, $/kW, or $/gal]

dPt . . . . . . . . . . . . . . . . . average power demand of building in hour t [kW]

dQt . . . . . . . . . . . . . . . . average heating demand of building in hour t [kW]

gt . . . . . . . . . . . . . . . price of natural gas from the utility in hour t [$/kWh]

hj . . . . . . . specific heat of fluid output from each technology j [kWh/(kg ◦C)]

kinj . . . . . . . . . . . . . . . nameplate power rating into each technology j [kW]

koutj . . . . . . . . . . . . . nameplate power rating out of each technology j [kW]

mj . . . . . . . . . . . . . . . . . average O&M cost of each technology j [$/kWh]

pt . . . . . . . . . . . . . . . . . price of power from the utility in hour t [$/kWh]

pmax
n . . peak demand charge for power from the utility in month n [$/kW/month]

rdown
j . . . . . . . . . . . maximum ramp-down rate for each technology j [kW/hr]

rupj . . . . . . . . . . . . . . maximum ramp-up rate for each technology j [kW/hr]

xiii





smax
j . . . maximum nameplate energy storage capacity of each technology j [kWh]

smin
j . . . minimum nameplate energy storage capacity of each technology j [kWh]

vmax
j . . maximum nameplate water storage capacity of each technology j [gallons]

vmin
j . . minimum nameplate water storage capacity of each technology j [gallons]

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . tax on carbon emissions [$/kg]

zg . . . . . . . average carbon emissions rate for natural gas combustion [kg/kWh]

zp . . . . . . . . . . . . . average carbon emissions rate for utility power [kg/kWh]

Variables

Aj . . . . . . . . . . . . . . . . . . number of each technology j acquired [integer]

Bin
jt . 1 if water in each technology j is above (τ inj + ε) in hour t, 0 otherwise [binary]

Bout
jt . . 1 if water in each technology j is above τ outj in hour t, 0 otherwise [binary]

Ci . . . . . . . . . . total cost of cost element i over time horizon of length |T | [$]

Ejt . . . . . . . electric efficiency of each technology j operating in hour t [fraction]

F in
jt . . . . . . . . . flowrate of exhaust gas into each technology j in hour t [kg/hr]

F out
jt . . . . . . . . . . flowrate of water out of each technology j in hour t [gal/hr]

Gjt . . . . . . . . . aggregate natural gas input to each technology j in hour t [kW]

Njt . . . . . . . . . . . . . number of each technology j operating in hour t [integer]

Ńjt . increased number of each technology j operating from hour t− 1 to t [integer]

P in
jt . . . . . . . . . . . . aggregate power input to each technology j in hour t [kW]

P out
jt . . . . . . . . . aggregate power output from each technology j in hour t [kW]

Qjt aggregate thermal energy stored in each technology j at the start of hour t [kWh]

Qin
jt . . . . . . . . . . . . . aggregate heat input to each technology j in hour t [kW]
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Qout
jt . . . . . . . . . aggregate heat output from each technology j in hour t [kW]

Sjt . . . aggregate state-of-charge of each technology j at the start of hour t [kWh]

Tjt . . . . . . . . . temperature of water stored in each technology j in hour t [◦C]

U in
t . . . . . . . . . . . . . . . . . . . . . . power sold to the utility in hour t [kW]

Uout
t . . . . . . . . . . . . . . . . . power purchased from the utility in hour t [kW]

Umax
n . . . . . . . . . . . . peak power purchased from the utility in month n [kW]

Vj . . . . . . . . . . . . . . . . . . water storage capacity of technology j [gallons]
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INTRODUCTION

Distributed generation (DG) has gained interest as an alternative source of power

for new and existing buildings in the residential, commercial, and industrial sec-

tors. Rather than solely purchasing electricity from a centralized utility, a building

owner can invest in an on-site system to supply power using non-renewable tech-

nologies such as reciprocating engines, microturbines, and fuel cells, and renewable

technologies such as photovoltaic (PV) cells, wind turbines, and geothermal-based

power generators. When integrated with heat recovery equipment, solar thermal col-

lectors, and absorption chillers, on-site systems can also supply some of the heating

and cooling demands. In addition to generation, DG systems can include electric and

thermal storage technologies to address the uncertainty in the supply available from

renewable generators or to take advantage of time periods in which utility prices are

low. Our research considers the integration of technologies such as these with existing

commercial buildings.

There are a number of reasons why DG systems should be considered for commer-

cial building applications. Between 2005 and 2009, the commercial sector accounted

for 36% of electricity consumption across all sectors, which resulted in an average

annual cost of roughly $127 billion (see [1]). Gumerman et al. [2] list benefits to

the owner of DG systems, which have the potential to reduce this economic burden.

These benefits include a lower cost of electricity (in some markets), protection from

utility price volatility, more reliable power, and greater energy efficiency. The authors

further describe potential benefits of DG to the local community. When composed

of “clean” natural gas-fed or renewable technologies, DG systems emit less carbon

dioxide than most centralized power plants. Smaller, on-site generation also addresses

much of the opposition in local communities to the construction of large power plants

1



and transmission lines. Yet, based on Department of Energy projections for electric-

ity consumption and DG market penetration, on-site systems will supply a mere 2%

of commercial sector electricity demand in 2035 (see [3]).

This disparity between the noted operational benefits of DG systems and the mod-

est prediction for future market penetration exists for a variety of reasons. From a

purely economic standpoint, many power utilities maintain low prices for electricity

while the capital and installation costs for DG technologies remain high. This dis-

crepancy has discouraged building owners from investing in DG systems. However,

due to their lower emissions rates compared to those of centralized power plants,

some DG technologies afford lower environmental costs which building owners often

have no economic incentive to internalize. Properly considering all of the costs as-

sociated with generation, which include environmental costs and other externalities,

effectively increases the price of electricity from the utility and may make DG more

economically viable. Finally, DG has experienced limited implementation simply due

to a lack of understanding regarding how to appropriately design (i.e., configure and

size) and dispatch (i.e., operate) complex, mixed-resource systems. We refer to this

task of determining the lowest cost mix, capacity, and operational schedule of DG

technologies as the design and dispatch problem.

Extant research, which is reviewed in Chapter 1, focuses on various aspects of

the design and dispatch problem. Many studies address the optimal performance of

an individual DG technology, but do not resolve the system-level problem of integrat-

ing, sizing, and operating multiple technologies. Other research seeks the optimal

operational strategy (i.e., dispatch) of an existing system, but does not consider the

optimal combination and capacity (i.e., design) of technologies in which to invest. Our

research focuses on the optimal design and dispatch of a DG system. Similarly fo-

cused research in the literature applies simulation models, evolutionary algorithms, or

more traditional mathematical programming algorithms, such as branch-and-bound,
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to the design and dispatch problem. In general, studies that apply simulation or

evolutionary algorithms cannot guarantee global optimality of their solutions. The

existing applications of branch-and-bound to the design and dispatch problem pro-

vide a guarantee of global optimality, but fail to consider many of the dynamic (i.e.,

off-design) performance characteristics of the technologies that are required to real-

istically model the system operation. Our research contributes to the literature by

providing techniques for determining the provably globally minimum cost DG sys-

tem design and dispatch without sacrificing realistic operation of the technologies. In

this paper, we outline the contributions of our research in the form of three objectives.

Objective 1: Develop a tractable optimization model which determines how to de-

sign (i.e., configure and size) and dispatch (i.e., operate) a combined heat and power

(CHP) DG system at the globally minimum economic and environmental cost. This

model should include dynamic performance characteristics of the DG technologies.

Tractability is a concern with the development of a model such as this. First,

the time fidelity and total time horizon under consideration can make instances of

the model quite large. To realistically capture both short-term spikes and long-term

seasonal shifts in demand, one might consider model instances with a one-year time

horizon at the hourly level of fidelity. However, this results in 8,760 time periods

for each time-varying variable and constraint in the model. Second, since the system

design involves the acquisition of real technologies which are only manufactured in

discrete sizes, the associated variables must assume integer values. Finally, realisti-

cally modeling the operation of complex, CHP systems requires constraints to control

the operational status (i.e., standby or “on”), ramping (i.e., increasing or decreasing

power output), and part-load (i.e., below maximum power output) electric efficiency

of the generators. Constraints are also required to control the state-of-charge (i.e., in-
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ventory) of electric storage technologies and the time-varying temperature of thermal

storage technologies. These constraints can include integer variables in each time pe-

riod, connections between consecutive time periods, and nonlinear equalities. Given

all of these characteristics, the resulting model is a large, nonseparable, nonconvex,

mixed-integer, nonlinear programming (MINLP) problem. Chapter 2 presents the

mathematical formulation of this MINLP, which we call (P).

There exist few algorithms suitable for solving large, nonconvex MINLPs, such as

(P). Furthermore, existing algorithms are dependent on the problem structure. The

application of a nonlinear branch-and-bound algorithm requires methods to obtain

global upper and lower bounds on the objective value at each node in order to con-

verge on the optimal solution. However, these bounds can be difficult to obtain for

large, nonconvex problems. Thus, we develop problem-specific convex underestima-

tion techniques, motivated by our engineering insight, to obtain global lower bounds

on the objective value of (P). We also develop a linearization heuristic to obtain

integer-feasible solutions, and thus global upper bounds, for (P). These bounding

techniques can be applied as part of a nonlinear branch-and-bound algorithm to solve

large instances of (P) to global optimality. Chapter 3 details our convex underes-

timation, called (U), and our linearization heuristic, called (H), and compares the

solutions provided by these bounding techniques to those of existing MINLP solvers.

Objective 2: Evaluate the qualitative modeling differences and the quantitative so-

lution differences between (P) and simpler models which simplify or ignore dynamic

performance characteristics of the DG technologies.

Simpler global optimization models for the design and dispatch of DG systems fail

to consider many performance characteristics that constrain the dynamic operation

of the technologies. Simplifying or ignoring these characteristics permits a mixed-
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integer, linear programming (MILP) formulation of the problem with few integer

variable restrictions. Thus, even large instances (i.e., long time horizons) of the

design and dispatch problem can be solved with relative ease. However, insufficiently

modeling the system dynamics could result in the prescription of unrealistic system

dispatch schedules and, ultimately, in the recommendation of a suboptimal system

design. Hence, a more detailed design and dispatch model is required to validate (or

invalidate) the assumptions made in simpler, linear models.

(P) addresses this requirement by prescribing a globally minimum cost system

design and dispatch that includes dynamic performance characteristics of power and

heat generation and storage that are not considered in simpler, linear models. In ad-

dition to typical constraints on demand, capacity, and inventory balance, (P) models

the maximum turn-down, start-up fuel consumption, ramping capability, and part-

load electric efficiency of power generation technologies, and models the time-varying

temperature of thermal storage technologies. The consideration of these dynamic

performance characteristics can be particularly important when the technologies are

operated in a load-following (i.e., time-varying), rather than baseload (i.e., fixed),

manner. In some applications, the DG system configuration and capacity, the build-

ing’s energy demands, and/or the local utility’s rates, policies, and procedures may

require a time-varying dispatch from the DG technologies. In these instances, (P)

captures the real-world operation of the technologies more accurately than models

which simplify or ignore dynamic performance characteristics. Chapter 4 presents a

representative MILP formulation of the design and dispatch problem, which we call

(S), and discusses the qualitative and quantitative differences between (P) and (S).

Objective 3: Determine the parametric conditions for energy markets, building de-

mands, and technology performance characteristics that make DG most economically

viable.

5



(P) provides a means to evaluate the economic viability of various DG technolo-

gies, integrated with different building types, which can be located in diverse energy

markets. This type of sensitivity analysis can be accomplished by varying the param-

eter values (e.g., energy pricing, emissions rates, power and heating loads, capital and

operational costs, and efficiencies) to create an array of problem instances, and then

solving those instances of (P) to determine which combinations of parameter values

result in DG acquisition. However, large instances (e.g., a one-year time horizon at

hourly fidelity) of (P) can be time consuming and computationally expensive to solve.

Additionally, for many instances, the combination of energy market, building type,

and DG technology under consideration results in an optimal design and dispatch

solution that does not include the acquisition of DG. This can be due to a variety of

factors, including low-cost electricity from the utility, volatile and/or non-coincident

electric and thermal loads for the building, and high capital cost and/or low efficiency

for the DG technologies. In any case, a great deal of time and computing power can

be expended solving various market-building-technology instances of (P) in order to

discover a combination for which DG is economically viable. For this reason, we wish

to identify combinations which are likely to be economically viable prior to solving

(P) to determine the optimal design and dispatch.

In Chapter 5, we develop parametric conditions for the economic viability of a

CHP DG technology. In other words, we determine conditions for which the savings

from operating a CHP DG technology outweigh the cost of acquiring that technology.

These parametric conditions address (i) the local energy market, via pricing and

emissions rates, (ii) the building of interest, via energy demands and existing heating

technology characteristics, and (iii) the CHP DG technology under consideration, via

costs and performance characteristics. The development of conditions for these model

parameters provides us screening criteria for the instances of (P) we wish to solve.
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Finally, Chapter 6 concludes the paper by reviewing the major findings from

each chapter, and by presenting recommendations for future work.

7





CHAPTER 1

LITERATURE REVIEW

A variety of methods and models, which are reviewed by Manfren et al. [4], are

applied to the DG design and dispatch problem. There appear to be three primary so-

lution techniques for existing models. Simulation, evolutionary algorithms, and more

traditional mathematical programming algorithms are the most common techniques

for determining what DG technologies to acquire and how to operate them to meet

a building’s energy demands. In this chapter, we discuss these three approaches in

more detail and then present a review of the literature which applies each approach.

1.1 Approaches

Simulation models are intended to mimic the behavior of a system given fixed

parameters and formulas which relate those parameters. Though the values of these

parameters can be varied between runs to determine the sensitivity of the model, a

simulation model cannot prescribe what parameter values lead to the desired out-

come (i.e., there are no decision variables). When applied to the design and dispatch

problem, simulation models can calculate the cost of acquiring a given system and

operating it in a set manner, but they cannot determine what design and dispatch

produces the lowest cost system within a single run. Instead, such models require the

enumeration and simulation of many designs and dispatch schedules, and the selec-

tion of the lowest cost system out of those which were simulated. However, simulation

models do have advantages when compared to other approaches. Most notably, they

are capable of modeling stochastic parameter values and nonlinear relationships be-

tween parameters. Given the uncertainty of demand, weather, and pricing, as well

as the nonlinearities inherent in modeling the operation of complex systems, simula-

tion models provide a means of capturing aspects of the design and dispatch problem
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that other approaches cannot. However, other approaches include algorithms which

determine the parameter values (in this case, decision variable values) that result in

an optimal outcome. Two classes of optimization algorithms applied in the DG liter-

ature are evolutionary algorithms and more traditional mathematical programming

algorithms.

Evolutionary algorithms (EAs), including genetic algorithms (GAs), are search

heuristics for optimization problems which generate candidate solutions to improve

(evolve) initial solutions according to some objective(s). Generally, such algorithms

terminate after a predetermined number of evolutions or when the value of the objec-

tive(s) is no longer improving. EAs have been developed, in large part, to overcome

the difficulties associated with solving nonlinear optimization problems. For the de-

sign and dispatch problem, these algorithms can be used to determine the lowest cost

system while realistically capturing the nonlinearities in the operation of the tech-

nologies. Unfortunately, this class of algorithms provides no guarantee of obtaining a

globally optimal, or even locally optimal, solution. Because EAs do not include meth-

ods for bounding the optimal objective function value, there is no way of determining

whether the solution which results from the algorithm is close to optimal.

More traditional optimization algorithms focus on obtaining solutions with the

guarantee of global optimality. Linear programming (LP) problems that include only

continuous-valued variables are solved with algorithms such as the simplex and in-

terior point methods. These algorithms take advantage of the convex structure of

linear, continuous problems in order to guarantee that any locally optimal solution is

also a globally optimal solution. Mixed-integer, linear programming (MILP) problems

are solved using the branch-and-bound algorithm. This algorithm solves continuous

versions of the integer problem at each iteration by relaxing integrality restrictions

to obtain upper and lower bounds on the optimal objective function value. When

the upper and lower bounds converge, the algorithm obtains a guaranteed globally

10



optimal solution. When applied to the design and dispatch problem, the branch-

and-bound method determines the mix, capacity, and operational schedule of DG

technologies which meet the demands of a building at the globally minimum cost.

However, these traditional algorithms are not capable of solving nonlinear problems.

Solution criteria, such as Kuhn-Tucker optimality conditions, and techniques, such

as Lagrangian relaxation, for nonlinearly constrained problems do exist. However,

depending on the problem structure, there may be no guarantee of global optimality

with these approaches. Accordingly, much of the work applied to the design and

dispatch problem avoids the inherent nonlinearities in the system by developing sim-

pler, linear formulations which can be solved with algorithms that guarantee global

optimality. The next section presents applications of simulation models, evolutionary

algorithms, and traditional algorithms.

1.2 Applications

Research regarding DG focuses on various aspects of the design and dispatch

problem. Some studies address the optimal design of an individual DG technology,

rather than the design of an integrated system of technologies. Braun [5] presents

a techno-economic design model for a solid oxide fuel cell (SOFC) CHP system to

determine operating parameters and capacities which maximize the life-cycle savings

or minimize the life-cycle cost. Sayyaadi [6], Toffolo and Lazzaretto [7] develop a

multi-objective EA to determine the pressure, temperature, and efficiency parameters

for a gas turbine which minimize the levelized cost of investment, operation, and

emissions while maximizing efficiency. Azhdari et al. [8] solve a linear program to

determine the optimal distribution of available steam to turbines in order to maximize

power output. Each of these studies presents the optimal design for an individual

technology, but does not resolve the system-level problem of sizing, integrating, and

operating multiple technologies together.
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Many studies address the operation of an existing system, but do not consider

the system design. Boait et al. [9] address DG system operation with a simulation

model that evaluates the energy costs for various building sizes based on stochastic

demand and disparate levels of occupancy. Mago and Hueffed [10] also simulate the

operation of an existing system and test the impact of multiple operational strategies

on cost, energy consumption from the grid, and carbon emissions. Nosrat and Pearce

[11] simulate the operation of a hybrid PV-CHP system in order to determine the

impact on dispatch strategy of accounting for building cooling loads. Subbaraj et

al. [12] solve a nonlinear model of DG system operation using a GA to minimize the

total fuel cost required to meet heat and power demand by choosing the dispatch

levels from integrated power-only, heat-only, and CHP generators. Similarly, Kong

and Wang [13] minimize the total cost of fuel and electricity to operate a DG system

to meet power, heat, and cooling loads by selecting the optimal load fraction for a

gas turbine and distribution of exhaust to a chiller and boiler. Ishida et al. [14] also

model a gas turbine-based system, but derive Kuhn-Tucker optimality conditions

to determine system operating levels that meet demand in a single time period at

minimum operating cost. Firestone et al. [15] present a mixed-integer linear program

with stochastic scenarios for load demand, generator availability, and solar capacity

that determines the optimal dispatch of renewable and non-renewable generation in

each hour in order to minimize the expected monthly operational cost. Though these

studies examine the potential cost savings from operating a specific DG system, they

do not address the design of the system itself.

Several existing studies consider both system design and dispatch, but apply dis-

similar solution techniques, objectives, and technologies. Medrano et al. [16] simulate

a small set of possible system designs, consisting of fuel cells, microturbines, photo-

voltaic (PV) cells, and absorption chillers, for four commercial building types, in order

to compare annual costs and emissions to those of conventional systems. Though this
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work does evaluate the savings associated with DG integration, the authors do not

consider energy storage, and the system configuration, sizing, and operational strategy

are determined a priori. When enumerating only a subset of possible system designs,

there is no means to determine whether one of the few designs under consideration

leads to globally minimum costs and emissions. The Hybrid Optimization Model for

Electric Renewables (HOMER), developed by the National Renewable Energy Lab-

oratory (NREL), is a simulation model which enumerates all possible configurations

of a variety of user-specified DG technologies, including storage. HOMER calculates

the hourly operation of the system configurations that can feasibly meet the annual

demand of the building(s) of interest and rank orders the systems based on life-cycle

cost (see [17], [18], [19], and [20]). Although these simulation models investigate

feasible system configurations to determine which of the system designs under con-

sideration provides the lowest cost, the system dispatch strategy is pre-specified by

the user, rather than determined by the model. The inability to optimally select the

system dispatch is particularly troublesome when the system design includes storage,

because the model cannot consider the demand in future time periods when choosing

the dispatch in the current time period. Thus, as with any simulation model, the

results are inherently descriptive rather than prescriptive.

In contrast to simulation models, many studies prescribe the system design and

dispatch with EAs. Burer et al. [21] combine simulation and EAs by initially simu-

lating feasible system designs consisting of a combined-cycle fuel cell and gas turbine,

a heat pump, and a chiller, and then using an EA to determine the optimal dispatch

for each design. The optimal dispatch is based on either the minimum total annual

cost or minimum carbon dioxide emissions. The authors apply the model to a clus-

ter of residential buildings, which exhibits a very different load profile compared to

a single commercial building, and do not consider storage or renewable sources of

generation. Xu et al. [22] consider only storage and renewable generation by design-
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ing a stand-alone wind-PV-battery power system for a small residence using a GA

to simultaneously minimize the capital cost of the acquired technologies and maxi-

mize the reliability of the system. While this model addresses only the capital cost

of a stand-alone renewable system, a hybrid renewable-nonrenewable, grid-connected

system must also consider the operational cost of fuel and power from the utilities.

Kayo and Ooka [23] minimize the consumption of fuel and power from the utilities

using a GA to design and dispatch a DG system for a large commercial building that

includes a gas-fed co-generation unit, a heat pump, a chiller, and PV cells. The sys-

tem is designed by selecting from a list of capacity options for each technology and

dispatched for three representative days throughout the year; however, the authors

do not address the capital cost of designing the system.

Although these models are capable of prescribing a system design and dispatch

schedule, the EA approach is fundamentally different than that of traditional math-

ematical programming alogorithms. In general, search heuristics such as EAs do not

include methods for bounding the optimal objective function value and terminate

based solely on decreased improvement in the objective. Thus, there is often no way

of determining whether the solution which results from the algorithm is close to glob-

ally (or even locally) optimal. By contrast, traditional algorithms apply global upper

and lower bounding techniques which provide a provable measure of the quality of

design and dispatch solutions. The work described next leverages provable global

optimization techniques, such as the simplex and branch-and-bound algorithms, to

determine the optimal system design and dispatch.

Weber et al. [24] combine EAs and the simplex algorithm by first determining

the system design with a multi-objective EA aimed at minimizing the cost (capital

and operational) and carbon emissions of the selected technologies, and then deter-

mining the system dispatch by solving a linear program that minimizes the cost of

utility-purchased electricity and fuel. In this model, fuel cells are integrated with
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heat exchangers, thermal storage tanks, and absorption chillers to meet the power,

heating, and cooling demands of an office building for 12 representative days of the

year. The authors do not consider net-metering, renewable generation, or electricity

storage. Beihong and Weiding [25] and Oh et al. [26] present similar mixed-integer

programs for optimally sizing and operating a DG system consisting of a gas turbine,

a waste heat recovery boiler, and an absorption chiller, for a large commercial build-

ing. These models apply branch-and-bound algorithms to minimize the capital and

operational costs of the system, subject to the power, heating, and cooling demands

of the building and the minimum and maximum capacities of the technologies that

are operating in a given representative time period. The authors do not consider

renewable generation, energy storage, or the cost of emissions. Siddiqui et al. [27]

and Ren and Gao [28] formulate similar MILPs for the optimal design and dispatch of

a DG system that includes renewable generation, energy storage (thermal and elec-

tric), and the cost of carbon emissions. The Siddiqui et al. model, developed by

researchers at Lawrence Berkeley National Laboratory (LBNL), is referred to as the

Distributed Energy Resources Customer Adoption Model (DER-CAM). Instances of

DER-CAM are solved using the branch-and-bound algorithm to determine the num-

ber of DG technologies to acquire, along with their operating levels over time, to

meet the power, heating, and cooling demands of various building types at minimum

capital, operational, and environmental (i.e., emissions) cost (see also [29] and [30]).

In contrast to other research, DER-CAM addresses both the design and dispatch of

a DG system, applies a provable global optimization approach, includes both economic

and environmental costs in its objective, and considers the generation and storage of

both power and heat using renewable and nonrenewable technologies. Given all of

these attributes, DER-CAM is the most flexible of the design and dispatch models

in the existing literature. But, DER-CAM fails to consider many performance char-

acteristics that constrain the dynamic (i.e., off-design) operation of DG technologies.
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These characteristics can be critical to accurately modeling the operation of the DG

system. Thus, (P) contributes to the DG literature by providing a model that deter-

mines the globally minimum economic and environmental cost CHP system design

and dispatch, while still considering the dynamic performance characteristics of the

technologies.
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CHAPTER 2

MODEL

In this chapter, we present a global optimization model that determines the min-

imum cost mix, capacity, and operational schedule of DG technologies that meet the

hourly power and heating demands of an existing commercial building for an entire

year. The characteristics of such a model can largely depend on the technologies un-

der consideration. Thus, we begin the chapter by presenting the specific DG system

considered in our research and by discussing the performance characteristics of the

individual technologies in that system. We then provide a general description of the

parameters, variables, objective, and constraints in the system model. We conclude

the chapter by presenting the detailed mathematical formulation of (P).

2.1 System Technologies

The specific system addressed in this research is depicted in Figure 2.1. We

consider the retrofit of an existing commercial building with a CHP DG system. If

no DG technologies are acquired, then the building receives all of its electricity from

the power utility (i.e., macrogrid) and all of its heat from a natural gas-fired boiler.

The cooling demand is met by existing vapor-compression air conditioning units and

is included as part of the power demand. The heating demand includes space and

water heating, both of which are met with hot water (i.e., space heat is provided

by hot water radiators). Our model considers the acquisition of a DG system which

generates power with fixed-tilt PV cells and/or natural gas-fed solid oxide fuel cells

(SOFCs) which, according to Greene and Hammerschlag [31], provide lower carbon

emissions than other DG-scale generators. The CHP SOFCs are integrated with heat

exchangers and a water tank, which allow for the storage of thermal energy in the
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form of hot water. The system also includes the option for electric storage using lead-

acid batteries. We do not consider other non-renewable generators, wind turbines,

solar thermal, or absorption chillers. However, our model can be adapted to include

these technologies.

Figure 2.1: Combined heat and power (CHP), distributed generation (DG) sys-
tem consisting of photovoltaic (PV) cells, power-only and CHP solid-oxide fuel cells
(SOFCs), lead-acid batteries, and a hot water storage tank.

PV cells provide power by converting solar radiation into electricity. Individual PV

panels or larger arrays can be installed on buildings or on the ground in fixed positions

or with the ability to track the sun. Given that solar radiation is reduced during

cloudy and night-time periods, only a fraction of a PV cell’s nameplate power capacity

is available in any given hour. This restriction on PV availability is modeled in (P).

Despite their limited ability to produce power, PV cells could prove economically

viable in the commercial building market, particularly when integrated with electric

storage technologies. See Price and Margolis [32] for further details on specific PV

technologies.
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Existing electric storage devices include many different types of battery, flywheel,

and pumped hydro technologies. The applicability of these technologies depends on

the amount of storage capacity required and the discharge rate at which it must be

delivered. In general, the rate at which energy can be added to or removed from a

battery is limited by its energy capacity. The charge-discharge process, which is cap-

tured in (P), also suffers from losses due to inefficiencies in the conversion between

electrical and chemical energy. Thus, greater power output is achieved by acquiring

larger, or more, batteries. Considering these performance characteristics, lead-acid

batteries are particularly well-suited for DG applications given their discharge capa-

bilities, and their commercial market availability and maturity. See Schoenung and

Hassenzahl [33] for further details on specific battery technologies.

Fuel cells convert the chemical energy of a fuel, such as natural gas, directly into

electrical energy through electrochemical reactions. In this way, the performance and

technological characteristics of fuel cells resemble those of batteries more than those

of conventional, fossil fuel-based combustion generators. However, unlike batteries,

fuel cells do not require charging and can continue to produce power as long as they

are supplied with reactants (such as fuel and air). The materials of construction

employed by SOFCs, in particular, demand high operating temperatures to achieve

practical power generating efficiencies. Because SOFCs require a significant amount

of time to reach operating temperature (i.e., maximum turn-down), their ability to

depart standby mode (i.e., start up) and change power output between time periods

(i.e., ramp) is limited. Additionally, the ratio of their electric energy output to fuel

energy input (i.e., electric efficiency) decreases as power output increases. Thus,

power is generated with greater efficiency at part load (i.e., below maximum power

output) than at rated capacity. Maximum turn-down, start-up fuel consumption,

power ramping, and part-load electric efficiency are all performance characteristics

of off-design SOFC power generation that are modeled in (P). See Stambouli and
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Traversa [34], Braun et al. [35], and Hawkes et al. [36] for further details regarding

SOFC technology.

SOFCs can also be integrated with waste heat recovery and storage to form a

CHP system. For instance, the high-temperature exhaust gases from the SOFCs

could flow through heat exchangers in a water tank to store thermal energy in the

form of hot water. The flowrate of exhaust gas from SOFCs depends on their power

output and electric efficiency. As power output increases, electric efficiency decreases,

and the flowrate of exhaust gas increases. However, the heat that can be applied to

the tank depends not only on the flowrate of exhaust gas, but also on the temperature

difference between the gas and the tank water. Thus, the time-varying temperature

of the water stored in the tank, which is modeled in (P), impacts the effective thermal

efficiency of the SOFCs. See Braun [5] for further details on SOFC CHP building

applications.

2.2 Model Description

Our model includes parameters for the time fidelity and horizon being considered,

the heat and power demands of the building, the pricing and carbon emissions rates

of the utilities, and the capital and operational costs, carbon emissions rates, and per-

formance characteristics of all the technologies in the system. All of these parameters

are treated as deterministic.

The model includes two types of variables: design and dispatch. The design

variables establish the configuration and capacity of the DG system. In other words,

these variables determine how many of each DG technology in Figure 2.1 to acquire.

Since generators and batteries can only be purchased in discrete sizes, their associated

design variables are restricted to integer values. However, the acquisition of CHP

SOFCs includes a hot water storage tank, the volume of which can be increased by

a continuous number of gallons. If none of the DG technologies is acquired, then the

system is reduced to the existing configuration, which consists of only the macrogrid
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and the boiler.

The dispatch variables prescribe the distribution of energy across the system in

each time period. In other words, these variables determine the flow of power, heat,

and natural gas along the arrows depicted in Figure 2.1. If none of the DG technologies

is acquired, the system dispatch consists of supplying all of the power demand with

the macrogrid and all of the heat demand with the boiler. However, if some DG

technologies are acquired, then our model determines the share of demand supplied

by these technologies.

The objective of our model is to determine the DG system design and dispatch

which minimizes the total cost incurred by the building owner to meet demand over

the time horizon of interest. We assume the building owner and system owner are

the same entity. The total cost includes the capital and operational costs of the

acquired technologies, as well as the operational costs from the macrogrid and boiler.

The operational costs include operations and maintenance (O&M) costs, the cost of

purchased natural gas and electricity, and the taxes paid for the carbon emissions

from both the on-site system and the macrogrid’s centralized generation. The cost

of purchased electricity is a net cost, which considers the sale of electricity (i.e., net-

metering) back to the macrogrid.

Our model includes constraints on the power and heat demands of the building, re-

strictions imposed by the utilities, and limits on the performance of the technologies.

The power demand must be supplied in each time period by the macrogrid and/or by

any acquired DG technologies. According to typical net-generation regulations im-

posed by the utility, the total DG-generated power which is sold to the macrogrid in

each billing period cannot exceed the total power purchased from the macrogrid. The

heat demand must be supplied by the boiler and/or by the water storage tank. In sup-

plying power and heat, the DG system is constrained by the minimum and maximum

capacities of all the acquired technologies. The SOFCs are additionally constrained
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by their operating status and by their ability to ramp power output between time

periods. The model also limits increases and decreases to the inventories of electric

and thermal energy for the batteries and water storage tank, respectively. Finally,

we include a number of constraints to control the complex interactions between the

technologies which are acquired and operated within the system.

2.3 Mathematical Formulation (P)

We now present the mathematical formulation of our problem, (P), using the

sets, parameters, and variables defined in the nomenclature. To avoid verbosity, we

define the elements of the set J numerically as 1=Battery, 2=PV, 3=Power SOFC,

4=CHP SOFC, 5=Water Tank, 6=Boiler. Detailed descriptions of the objective and

constraints of (P) are provided in Sections 2.3.1 through 2.3.12.

Problem (P)

(see §2.3.1 Minimum Total Cost)

Minimize

∑
i∈I

Ci (2.1)

subject to

(see §2.3.2 Power and Heating Demand)

(ηmax
1 P out

1t − P in
1t ) +

∑
j=2..4

P out
jt + (Uout

t − U in
t ) = dPt ∀t ∈ T (2.2a)

h5(τ
out
6 − τ in5 )F out

5t

[(
1−

[
1− τ out6 − τmin

T5t − τmin

]
Bout

5t

)−1]
= dQt ∀t ∈ T (2.2b)

(see §2.3.3 Utility Restrictions)
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Umax
n ≥ Uout

t ∀n ∈ N , t ∈ Tn (2.3a)∑
t∈Tn

U in
t ≤

∑
t∈Tn

Uout
t ∀n ∈ N (2.3b)

(see §2.3.4 Power Capacity)

P out
1t ≤ kout1 A1 ∀t ∈ T (2.4a)

P in
1t ≤ kin1 A1 ∀t ∈ T (2.4b)

P out
2t ≤ a2tk

out
2 A2 ∀t ∈ T (2.4c)

µjk
out
j Njt ≤ P out

jt ≤ koutj Njt ∀j = 3, 4, t ∈ T (2.4d)

Njt ≤ Aj ∀j = 3, 4, t ∈ T (2.4e)

(see §2.3.5 Electric Efficiency)

Ejt =

(
ηmax
j − µjηmin

j

1− µj

)
−
(
ηmax
j − ηmin

j

koutj (1− µj)

)(
P out
jt

Njt

)
∀j = 3, 4, t ∈ T (2.5a)

(see §2.3.6 Natural Gas Consumption)

Gjt =
P out
jt

Ejt
∀j = 3, 4, t ∈ T (2.6a)

G6t =
h5F

out
5t (τ out6 − T5t)(1−Bout

5t )

ηQ6
∀t ∈ T (2.6b)

(see §2.3.7 Start Up and Ramping)

Nj,t+1 −Njt ≤ Ńj,t+1 ∀j = 3, 4, t < |T | (2.7a)

−δrdown
j Njt ≤ P out

j,t+1 − P out
jt ≤ δrupj Nj,t+1 ∀j = 3, 4, t < |T | (2.7b)

(see §2.3.8 Power Storage)

S1,t+1 − S1t = δ(ηmax
1 P in

1t − P out
1t ) ∀t < |T | (2.8a)

smin
1 A1 ≤ S1t ≤ smax

1 A1 ∀t ∈ T (2.8b)

S1,1 = S1,|T | (2.8c)

(see §2.3.9 Heat Capacity)
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F in
5t ≤ γ4G4t ∀t ∈ T (2.9a)

(see §2.3.10 Heat Storage)

T5,t+1 − (1− α5B
in
5t)T5t =

δηQ5 h4F
in
5t (τ

out
4 − T5t)− δh5F out

5t (T5t − τ in5 )

h5V5
∀t < |T | (2.10a)

T5t − τ in5 ≤ (τmax − τ in5 )A5 ∀t ∈ T (2.10b)

εBin
5t ≤ T5t − τ in5 ≤ ε+ (τmax − τ in5 − ε)Bin

5t ∀t ∈ T (2.10c)

(τ in5 − τ out6 )(1−Bout
5t ) ≤ T5t − τ out6 ≤ (τmax − τ out6 )Bout

5t ∀t ∈ T (2.10d)

T5,1 = T5,|T | (2.10e)

(see §2.3.11 Heat Storage Acquisition)

A5 ≤ A4 ≤

⌈
max
t∈T
{dPt }

kout4

⌉
A5 (2.11a)

vmin
5 ≤ V5 ≤ vmax

5 (2.11b)

(see §2.3.12 Non-negativity and Integrality)

P out
jt , P

in
jt , Sjt, Ńjt, Ejt, Gjt, F

out
jt , F

in
jt , Tjt, Vj ≥ 0 ∀j ∈ J , t ∈ T (2.12a)

Uout
t , U in

t , U
max
n ≥ 0 ∀n ∈ N , t ∈ T (2.12b)

Aj, Njt ≥ 0, integer ∀j 6= 5, t ∈ T (2.12c)

Aj, B
in
jt , B

out
jt binary ∀j = 5, t ∈ T (2.12d)

2.3.1 Minimum Total Cost

The objective is to minimize the total cost over the entire time horizon. The total

cost expressed in the objective function (2.1) includes the capital and operational

costs of the acquired technologies, as well as the existing operational costs resulting

from demand met by the macrogrid and boiler.

The fixed capital cost, C1, consists of the total amortized cost of all the DG

technologies that are acquired:
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C1 = c1s
max
1 A1 +

∑
j=2..4

cjk
out
j Aj + c5(V5 − vmin

5 ).

The capital cost of the CHP SOFCs is greater than that of the power-only SOFCs in

order to account for the acquisition of the water storage tank and heat exchangers.

The water tank’s initial size (vmin
5 ) is based on the building heating load. However,

the tank size can be increased for an additional cost per gallon.

The initial capital cost for each of the technologies can be amortized in a number of

different ways. One method of amortization uses the parameters and general equation

that follow:

ρ = interest rate [% (fraction) per time horizon]

λj = average lifetime of technology j [number of time horizons]

κj = initial capital cost of technology j [$/kWh, $/kW, or $/gal]

cj =
κje

ρλj

λj
. (2.13)

The numerator of equation (2.13) calculates what κj is worth after investment at

interest rate ρ over the average lifetime λj of technology j (see [37]). Thus, the

numerator represents the lifetime opportunity cost of acquiring the technology rather

than investing the initial capital cost at the current rate of return. The lifetime

opportunity cost is then divided by λj to determine the opportunity cost per time

horizon, which we call the amortized capital cost cj. Ultimately, the primary focus of

this research is not on the method of amortization. Rather, the final amortized cost

(cj) is the value of interest. Equation (2.13) is just one method for calculating that

cost, without loss of generality.

The variable operational costs of the DG system consist of O&M costs for the PV

cells and SOFCs, the cost of natural gas to fuel the SOFCs, the cost of the carbon

emissions associated with the combustion of natural gas, and the negative cost (i.e.,
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revenue) from the sale of power to the macrogrid. The O&M costs, C2, for the PV

cells and SOFCs increase with the energy output:

C2 =
∑
j=2..4

∑
t∈T

mjδP
out
jt .

The O&M cost for the CHP SOFCs, which accounts for the additional operational

costs of the water tank and heat exchangers, is greater than that for the power-

only SOFCs. Due to the limited need for variable maintenance on lead-acid battery

systems, the O&M costs for the batteries are assumed fixed and are treated as part of

the capital cost. The parameter δ is included to appropriately convert units of power

(kW) to units of energy (kWh).

Fuel and emissions costs, C3, are incurred both to start up the SOFCs (i.e., to

reach operating temperature) and to operate them within their performance limits.

These costs depend on the price (gt) of natural gas from the local utility, the price

(zzg) of carbon emissions, as determined by the tax rate and the emissions rate, and

the total amount of gas required for start up and operation:

C3 =
∑
j=3..4

∑
t∈T

(gt + zzg)
[σjµjkj

2ηmin
j

Ńjt + δGjt

]
.

Our formulation assumes a carbon tax exists where the building is located and that

the tax is paid by the building owner. We further assume that the SOFCs consume

natural gas with the same fixed electric efficiency during start up as at maximum

power output. Thus, the amount of gas required for a single SOFC to reach operating

temperature is treated as a fixed value. The variable Ńjt determines how many SOFCs

start up in a given time period, which allows for the calculation of the total amount

of gas required. Once a SOFC reaches operating temperature, the amount of natural

gas (Gjt) consumed depends on the power output and the electric efficiency as defined

in constraint (2.6a).
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The final operational cost for the DG technologies is the negative cost, C4, asso-

ciated with the sale of power to the macrogrid:

C4 = −
∑
t∈T

νtptδU
in
t .

We assume that net-metering is available with the local power utility and that the

utility can purchase power from the building owner in any hour at a fraction of, or

possibly full, market price. However, the total power purchased by the utility in each

billing cycle is subject to the restrictions imposed by constraint (2.3b).

In addition to the capital and operational costs of the acquired DG technologies,

the system incurs the cost of electricity purchased from the macrogrid and the oper-

ational costs for the boiler. If DG technologies are not acquired, then the macrogrid

and boiler costs are the only costs. The macrogrid charges both hourly and peak

monthly rates, which determine the total electricity cost, C5:

C5 =
∑
t∈T

(pt + zzp)δUout
t +

∑
n∈N

pmax
n Umax

n .

Depending on the rate schedule dictated by the power utility for the building and

location of interest, the charges pt and pmax
n could vary by time-of-day and/or season.

We must also consider the cost of the carbon emitted by the generation sources

employed by the macrogrid. Our formulation applies an average carbon emissions

rate (zp) for all of the macrogrid’s generation sources and assumes that the building

owner is taxed for the emissions associated with the purchased electricity. For both

natural gas and power utilities, the fixed monthly customer charge for service is not

included in the formulation since this cost is constant and therefore does not impact

the optimal solution.

Finally, the total cost includes the O&M, fuel, and emissions costs, C6, for the

existing boiler:
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C6 =
∑
t∈T

(ηQ6 m6 + gt + zzg)δG6t.

Similar to the operational costs of the SOFCs, the fuel and emissions costs of the boiler

depend on the price of natural gas and the price of carbon emissions. In contrast to

the SOFCs, the rated thermal efficiency (ηQ6 ) of the boiler is treated as fixed. The

amount of natural gas (G6t) consumed depends on whether the temperature of the

water flowing to the boiler is above or below the required delivery temperature. The

relationship between the water temperature and the amount of natural gas consumed

by the boiler is defined in constraint (2.6b).

2.3.2 Power and Heating Demand

Constraint (2.2a) ensures that the hourly demand for power is met by the net

discharge of the batteries (after accounting for the discharge efficiency ηmax
1 ), the

PV cells, the power-only and CHP SOFCs, and the net supply from the macrogrid.

Constraint (2.2b) dictates that the hourly demand for heat must be met by a mix

of hot and cold water flow. The demanded hot water, which is heated by the CHP

SOFC exhaust and/or by the boiler, must be delivered at a fixed temperature (τ out6 ).

If the temperature of the hot water is above delivery temperature (i.e., Bout
5t = 1),

then the hot water must be mixed with cold water at the main supply temperature

(τmin). As the temperature of the tank water increases, the required flow of cold water

for mixing increases, and the required flow of hot water from the tank decreases.

In the actual application of the model (see Appendix A), we use an algebraically

equivalent version of constraint (2.2b) with no fractional term. The elimination of

the fractional term avoids the possibility of division by zero when (T5t − τmin) =

0. The presentation of constraint (2.2b) in this formulation is strictly to ease the

interpretation by the reader.
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2.3.3 Utility Restrictions

Constraint (2.3a) establishes the peak power load supplied by the macrogrid in

each monthly billing cycle as the largest hourly load supplied by the macrogrid each

month. Constraint (2.3b) dictates that the DG system cannot be a “net-generator”

of power in each monthly billing cycle. Accordingly, the total power sold to the

macrogrid each month cannot exceed the total power purchased from the macrogrid

each month.

2.3.4 Power Capacity

Constraints (2.4a) and (2.4b) limit the rate at which power is discharged from and

charged to, respectively, all of the acquired batteries. If batteries are not acquired,

then the charge and discharge rates are set equal to zero. Constraint (2.4c) ensures

that only a fraction (a2t) of the nameplate power capacity of the acquired PV cells

is available in each hour, based on the prevailing weather conditions. Because the

solar radiation is often low enough that the available power from PV cells is zero

(e.g., during the night), there is no minimum power output enforced for PV cells.

Constraint (2.4d) limits the maximum and minimum power output of all operating

SOFCs in a given hour. The maximum turn-down (µj) results from the minimum

operating temperature necessary for the SOFCs to produce power. Constraint (2.4e)

dictates that the number of SOFCs operating in a given hour cannot exceed the

number acquired. Power supplied by the macrogrid in each hour is unconstrained in

this formulation.

2.3.5 Electric Efficiency

Constraint (2.5a) demonstrates that the average electric efficiency across all SOFCs

is a function of the number (Njt) of SOFCs operating and the total power (P out
jt ) they

produce. Our formulation assumes that each operating SOFC provides an equal share

of the total power produced in a given hour. Using the maximum (ηmax
j ) and mini-
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mum (ηmin
j ) electric efficiencies as endpoints, we treat the average electric efficiency

of all SOFCs as a decreasing linear function of the share of total power provided by

a single SOFC.

In the actual application of the model (see Appendix A), we use an algebraically

equivalent version of constraint (2.5a) that eliminates the fractional-variable term.

This alternate version of the constraint avoids the possibility of division by zero when

Njt = 0. The presentation of constraint (2.5a) in this formulation is strictly to ease

the interpretation by the reader.

2.3.6 Natural Gas Consumption

Constraint (2.6a) dictates that the total amount of natural gas consumed by all

of the operating power-only or CHP SOFCs in each hour is the quotient of their total

power output and their average electric efficiency. In the actual application of the

model, we use an algebraically equivalent version of this constraint that eliminates

the fractional-variable term by multiplying both sides of the equation by Ejt.

Constraint (2.6b) calculates the amount of natural gas consumed by the boiler in

each hour as the quotient of its heat output and its rated thermal efficiency. The

amount of heat the boiler must provide depends on the temperature (T5t) of the

water from the storage tank, if one is acquired. We assume the hot water must be

delivered to the building’s faucets and radiators at a fixed temperature (τ out6 ). If the

temperature of the water from the storage tank is below τ out6 in a given hour (i.e.,

Bout
5t = 0), then the boiler must provide the additional heat to increase the water

temperature to τ out6 . In this case, the amount of heat is calculated as the product

of the specific heat of the tank water (h5), the flowrate of the tank water (F out
5t ),

and the difference (τ out6 − T5t) between the delivery temperature and the tank water

temperature. If the temperature of the water from the storage tank is at or above

τ out6 in a given hour (i.e., Bout
5t = 1), then no additional heating from the boiler is

required. If a storage tank is not acquired, then the boiler must provide all of the heat
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demand, which entails heating all of the water from the average return temperature

(τ in5 ) up to delivery temperature (τ out6 ).

2.3.7 Start Up and Ramping

Constraint (2.7a) establishes the number of SOFCs that start up between time

periods t and t+1. If there is an increase in the number of operating SOFCs between

time periods (i.e., Nj,t+1 > Njt), then a positive number (Ńj,t+1) of SOFCs incur

the cost of fuel for start up. The cost-minimizing objective induces any solution

to set Ńj,t+1 to the smallest value allowable, given the constraints. Thus, in each

hour t, Ńj,t+1 is set equal to Nj,t+1 −Njt when Nj,t+1 > Njt and zero otherwise (i.e.,

Ńj,t+1 = max{Nj,t+1 − Njt, 0}). Given the integrality restrictions on Njt, we obtain

integer values for Ńjt without including such a constraint in the model.

According to constraint (2.7b), if SOFC power output increases from hour t to

hour t+ 1 (i.e., P out
j,t+1 > P out

jt ), then it cannot increase by more than the total ramp-

up capacity of all the SOFCs that are operating in hour t + 1. Similarly, if SOFC

power output decreases between consecutive hours (i.e., P out
j,t+1 < P out

jt ), then it cannot

decrease by more than the total ramp-down capacity of the SOFCs operating in hour

t. The parameter δ is included to properly convert units from kW/hr to kW.

2.3.8 Power Storage

Constraint (2.8a) demonstrates that the change in the inventory of energy in the

acquired batteries from the start of hour t to the start of hour t + 1 is determined

by the net power added to the batteries in hour t (after accounting for the charge

efficiency ηmax
1 ). The parameter δ is included to convert units from kW to kWh.

According to constraint (2.8b), the energy in all of the acquired batteries at the start

of any hour must remain within the total minimum and maximum state-of-charge.

If batteries are not acquired, then the total state-of-charge is set equal to zero in all

hours. Constraint (2.8c) requires the batteries to attain the same state-of-charge in
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the final time period as in the initial time period.

2.3.9 Heat Capacity

The water in the storage tank is heated with the exhaust gas from the CHP SOFCs.

Thus, constraint (2.9a) limits the maximum flowrate of hot exhaust gas into the water

tank in each hour to the exhaust gas output by the CHP SOFCs. The exhaust gas

output depends on the flow of natural gas into the CHP SOFCs, which is calculated

in constraint (2.6a). For time periods in which the use of all of the available exhaust

gas would cause the tank water temperature to exceed its maximum, we assume the

excess exhaust gas is vented. We further assume that the boiler is sized to meet

the peak heat load of the building. Thus, the maximum capacity of the boiler is

unconstrained in our formulation.

2.3.10 Heat Storage

Constraint (2.10a) demonstrates that the change in the temperature of the tank

water from the start of hour t to the start of hour t + 1 (after accounting for heat

loss to the ambient) is determined by the net thermal energy added to the water in

hour t and the heat capacity of the water. Though in reality the ambient heat loss

is a function of the temperature difference between the tank water and the ambient,

we apply a fixed heat loss factor (α5) for simplicity. However, the ambient heat loss

factor only applies if the tank water temperature is above the average temperature

of the water upon return to the tank (i.e., Bin
5t = 1). The thermal energy added

to the tank is the product of the time increment (δ), the heat exchanger efficiency

(ηQ5 ), the specific heat (h4) and flowrate (F in
5t ) of the CHP SOFC exhaust gas, and

the temperature difference (τ out4 − T5t) between the exhaust gas and the tank water.

The thermal energy removed from the tank is the product of the time increment (δ),

the specific heat (h5) and flowrate (F out
5t ) of the tank water, and the temperature

difference (T5t − τ in5 ) between the tank water and the return water. The net thermal
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energy added to the water is divided by the heat capacity (h5V5) of the volume of

water to determine the net temperature change. In the actual application of the

model (see Appendix A), we eliminate the fractional term on the right-hand side of

constraint (2.10a) by multiplying both sides of the equation by h5V5.

Constraint (2.10b) demonstrates the impact of not acquiring a storage tank. If a

tank is not acquired (i.e., A5 = 0), then the “tank” water is reduced to the tempera-

ture of the return water in every hour. As a result, all of the water must be heated to

delivery temperature by the boiler. If a tank is acquired, then the water in the tank

is limited to the maximum temperature (τmax) in all hours. Constraint (2.10c) deter-

mines whether the tank water temperature is arbitrarily close (within ε) to the return

water temperature. This constraint establishes the value of the binary variable (Bin
5t)

which controls the temperature decay due to heat loss to the ambient. Constraint

(2.10d) determines whether the tank water is above or below the hot water delivery

temperature. This constraint establishes the value of the binary variable (Bout
5t ) which

controls the need for additional heating from the boiler or for mixing with cold water.

Constraint (2.10e) requires the tank water to attain the same temperature in the final

time period as in the initial time period.

2.3.11 Heat Storage Acquisition

Constraint (2.11a) ensures that a water tank is acquired if and only if at least one

CHP SOFC is acquired. We use a conservative upper bound on the number of CHP

SOFCs acquired to control this if-and-only-if relationship between the binary variable

A5 and the integer variable A4. Constraint (2.11b) bounds the selected capacity for

the water storage tank based on the heat demands of the building of interest. The

lower bound on the tank size is the initial capacity, the cost of which is included in

the acquisition of CHP SOFCs.
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2.3.12 Non-negativity and Integrality

Finally, constraints (2.12a) - (2.12d) ensure all of the variables in our formulation

assume non-negative values. In addition to non-negativity restrictions, constraints

(2.12c) and (2.12d) establish the integrality of the appropriate variables.
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CHAPTER 3

SOLUTION TECHNIQUES

The algorithms capable of solving large, nonconvex MINLPs, such as (P), are

limited and dependent on the problem structure. A branch-and-bound algorithm re-

quires methods to obtain global lower and upper bounds on the objective value at each

node in order to converge at the optimal solution. For a mixed-integer linear mini-

mization problem, lower bounds are generally provided by solutions to the continuous

relaxation of the integer problem and upper bounds are provided by integer-feasible

solutions. However, continuous relaxations may not return valid lower bounds for

nonconvex problems, and integer-feasible solutions can be difficult to obtain for large

problems. Thus, we develop problem-specific convex underestimation techniques to

obtain global lower bounds on the objective value of (P). We also develop a lineariza-

tion heuristic to obtain integer-feasible solutions, and thus global upper bounds, for

(P). These bounding techniques can be applied as part of a nonlinear branch-and-

bound algorithm to solve large instances of (P) to global optimality.

In this chapter, we discuss the mathematical structure of (P), which motivates the

requirement for specialized solution techniques. We then present the lower-bounding

problem, (U), and upper-bounding problem, (H), that we use to bound and solve

instances of (P). We conclude the chapter by contrasting our solution techniques

with those of existing MINLP solvers.

3.1 Mathematical Structure

The size of a particular instance of (P) is determined by the selected time fidelity,

δ, and time horizon, |T |. The time horizon also determines the number of months,

|N |, under consideration in a given instance. (P) has a linear objective, 22|T |+|N |+6

variables (2|T |+ 4 general integer, 2|T |+ 1 binary), and 33|T |+ |N | − 2 constraints
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(7|T | − 1 nonlinear), not including non-negativity and integrality restrictions. Ta-

ble 3.1 lists the number of variables and constraints contained in (P) for various

time horizons at the hourly (δ = 1) level of fidelity, culminating in the one-year

(|T | = 8, 760) time horizon. In order to capture short-term fluctuations in demand

Table 3.1: Size of (P) instances for time horizons of interest.

Time Horizon Number of Variables Number of Constraints
(Hours) (Integer/Binary) (Nonlinear)

One Day (24) 533 (52/49) 791 (167)
Two Days (48) 1,061 (100/97) 1,583 (335)
Four Days (96) 2,117 (196/193) 3,167 (671)
One Week (168) 3,701 (340/337) 5,543 (1,175)
One Month (744) 16,373 (1,492/1,489) 24,551 (5,207)
One Year (8,760) 192,736 (17,524/17,521) 289,090 (61,319)

and support long-term capital investment decisions, we wish to determine a DG sys-

tem design and dispatch that meets the hourly demands of a building for a typical

year at the globally minimum total cost.

One might consider a smaller time increment (i.e., δ < 1) in order to capture

the greater demand volatility that exists at the sub-hourly level of fidelity. However,

smaller time increments increase the size of problem instances, even for the same time

horizon. For example, 15-minute time increments (δ = 0.25) increase the size (|T | =

35, 040) of one-year instances significantly. Similarly, a longer time horizon increases

the size of problem instances, even for the same time increment. One might consider

a time horizon of greater than one year (i.e., |T | > 8, 760), at the hourly fidelity,

in order to account for the variability in demand over multiple years. However, a

four-year time horizon, for example, produces the same significant increase in the size

(|T | = 35, 040) of problem instances. We believe the hourly-increment (δ = 1), one-

year (|T | = 8, 760) instance is the appropriate balance between fidelity and horizon.

The difficulty associated with solving larger (i.e., greater fidelity or horizon) problem
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instances is primarily due to the nonlinearities in (P).

Upon expanding and rearranging nonlinear constraints (2.2b), (2.5a), (2.6a), (2.6b),

and (2.10a), and suppressing the linear terms, we find that all of the nonlinearities in

(P) consist of bilinear and trilinear terms in equality constraints (see below). Thus,

the constraint set is nonconvex.

Linear + h5(τ
out
6 − τ in5 )F out

5t T5t + dQt T5tB
out
5t = 0

Linear +NjtEjt = 0

Linear +GjtEjt = 0

Linear + (h5/η
Q
6 )(τ out6 F out

5t B
out
5t + F out

5t T5t − F out
5t T5tB

out
5t ) = 0

Linear + h5(V5T5,t+1 − V5T5t + α5V5T5tB
in
5t + δF out

5t T5t) + δηQ5 h4F
in
5tT5t = 0

The algorithms suitable for solving nonconvex MINLPs are limited. The appli-

cation of a nonlinear branch-and-bound algorithm to solve (P) requires methods

for determining global upper and lower bounds on the objective value. When ap-

plied to an integer-restricted minimization problem, branch-and-bound generates a

non-increasing sequence of global upper bounds on the objective value and a non-

decreasing sequence of global lower bounds on the objective value which eventually

converge (within some tolerance) to provide the optimal solution. In general, global

upper bounds are provided by integer-feasible solutions obtained with local solvers

and global lower bounds are provided by solutions to continuous relaxations of the

integer problem. Both types of bounds can be difficult to obtain for large, nonconvex

MINLPs. Our testing indicates few existing MINLP solvers are capable of finding so-

lutions to one-day instances of (P), and none of those tested can provide solutions for

time horizons of one week or greater. Additionally, the nonconvex nature of (P) dic-

tates that solutions to continuous relaxations do not necessarily provide global lower

bounds. Accordingly, the next two sections discuss our techniques to obtain lower

and upper bounds which can be applied in a nonlinear branch-and-bound algorithm.
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3.2 Lower Bounding: Convex Underestimation (U)

A lower bound for a mixed-integer linear programming (MILP) minimization

problem is obtained by relaxing the integrality restrictions and solving the resulting

continuous problem. A lower bound for an MINLP minimization problem can also

be obtained in this manner as long as the problem is convex. However, nonconvex

problems provide no guarantee of obtaining a global lower bound when solving the

NLP relaxation. Thus, we formulate a convex underestimation problem, henceforth

referred to as (U), to obtain a global lower bound on (P).

Convex underestimation methods similar to those suggested by McCormick [38]

still appear in the literature today. According to equations (3) and (4) of Adjiman

and Floudas [39], bilinear and trilinear terms, respectively, are underestimated by

their convex envelope. The convex envelopes are constructed by replacing each of

the nonlinear terms with a new variable and adding linear inequality constraints that

bound the new variable. Bilinear terms require four constraints on the new variable

while trilinear terms require eight constraints. Considering some of our nonlinear

terms are repeated across constraints, (P) contains 9|T | − 1 distinct bilinear terms

and 2|T |−1 distinct trilinear terms that must be replaced with new variables. Accord-

ingly, the (U) formulation is identical to (P) with the exceptions of adding 11|T | − 2

new continuous variables, replacing each of the bilinear and trilinear terms with the

appropriate new continuous variable, and adding 52|T | − 12 new linear constraints.

Hence, (U) is an MILP, the solution to which provides a global lower bound on the

optimal solution to (P).

The formulation of the convex envelopes in (U) requires the following upper and

lower bounds on each of the original variables in the bilinear and trilinear terms:
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Variable bounds applied in (U)

0 ≤ Njt ≤

⌈
max
t∈T
{dPt }

koutj

⌉

0 ≤ Gjt ≤
( koutj

ηmin
j

)⌈max
t∈T
{dPt }

koutj

⌉

0 ≤ F in
5t ≤ γ4

( kout4

ηmin
4

)⌈max
t∈T
{dPt }

kout4

⌉
ηmin
j ≤ Ejt ≤ ηmax

j (3.1)(
τ out6 − τmin

τmax − τmin

)(
dQt

h5(τ out6 − τ in5 )

)
≤ F out

5t ≤
(

dQt
h5(τ out6 − τ in5 )

)
τ in5 ≤ T5t ≤ τmax

0 ≤ Bin
5t ≤ 1

0 ≤ Bout
5t ≤ 1

vmin
5 ≤ V5 ≤ vmax

5 .

The number of SOFCs operating (Njt) in any hour is bounded above by the number

of SOFCs acquired, according to constraint (2.4e). We apply a conservative upper

bound on the number of SOFCs acquired by assuming the building owner never

buys more SOFCs than what is required to supply the peak power load without

assistance from the macrogrid. This upper bound on the number of SOFCs acquired

also limits the maximum amount of natural gas (Gjt) fed to the SOFCs in any hour,

according to constraints (2.4d), (2.5a), and (2.6a), and the maximum flowrate (F in
5t )

of CHP SOFC exhaust heat into the water tank, according to constraint (2.9a). The

electric efficiency (Ejt) of the SOFCs is bounded above and below by the maximum

and minimum efficiencies, respectively, according to constraint (2.5a). The flowrate

(F out
5t ) of heated water out of the tank is bounded above by the demand flowrate with

no cold water mixing and bounded below by the demand flowrate with the maximum

cold water mixing, according to constraints (2.2b) and (2.10d). The temperature

(T5t) of the water in the tank is bounded above and below by the maximum and
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return temperatures, respectively, according to constraint (2.10d), while the binary

temperature variables (Bin
5t and Bout

5t ) are bounded by zero and one. Finally, the

capacity (V5) of the water tank is bounded by the same limits dictated in constraint

(2.11b).

We next attempt to tighten the variable bounds in (3.1) using an optimization-

based approach (see [39] or [40]). With this approach, each of the variables in (3.1) is

maximized or minimized subject to the constraints in (U) in order to obtain tighter

upper or lower bounds, respectively. After executing bound tightening on all of the

variable bounds in (3.1) for various small (i.e., one-day) instances of the problem,

we find that only the upper bound on T5t, the upper bound on Bout
5t , and the lower

bound on F out
5t benefit from the bound tightening. The fact that these three bounds

can be tightened logically follows from the relationships dictated by constraints (2.2b),

(2.10a), and (2.10d). In certain time periods, the maximum possible inflow of heat

from the CHP SOFCs and the minimum required outflow of heat to meet demand

could make it impossible for the tank water temperature (T5t) to reach its upper bound

(τmax), or even delivery temperature (τ out6 ), in the following time period, according to

constraint (2.10a). If the tank water temperature is below the delivery temperature,

then the indicator variable (Bout
5t ) must be set to its lower bound (zero), according to

constraint (2.10d), and the flow of hot water (F out
5t ) must be set to its upper bound,

according to constraint (2.2b). Based on this information, we expedite the bound

tightening procedure for larger (i.e., two-day and greater) instances of the problem

by only applying the optimization-based approach to obtain the tight upper bound on

T5t (referred to as T̂5t) and subsequently directly calculating the tight upper bound on

Bout
5t (referred to as B̂out

5t ) and the tight lower bound on F out
5t (referred to as F̌ out

5t ). To

further speed the bound tightening, we relax integrality in (U) as part of the following

algorithm:
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Bound Tightening Algorithm

1. Set T̂5t = τmax, B̂out
5t = 1, F̌ out

5t =
(
τout6 −τmin

τmax−τmin

)(
dQt

h5(τout6 −τ in5 )

)
∀t.

2. Loop ∀t ∈ T .

(a) Maximize T5t subject to (U) with integrality relaxed.

(b) Set T̂5t equal to the objective value resulting from (a).

(c) Set B̂out
5t = 1 if T̂5t > τ out6 and 0 otherwise.

(d) Set F̌ out
5t =

(
1−

[
1− τout6 −τmin

T̂5t−τmin

]
B̂out

5t

)(
dQt

h5(τout6 −τ in5 )

)
.

This algorithm can be repeated multiple times to try and achieve even tighter

bounds. However, empirical evidence suggests the majority of the improvement in

the bounds occurs within the first two to three iterations. We also find the algorithm

results in the greatest improvement in the bounds on T5t, B
out
5t , and F out

5t in hours that

follow large spikes in the heating demand. These tighter bounds are then applied in

(U), with the original objective function and integrality once again enforced, to obtain

an improved (i.e., greater) global lower bound on the optimal objective value for (P).

For the six instances of varying size presented in Section 3.4, the bound tightening

algorithm increases the global lower bound on (P) by an average of 1.6%. We next

present techniques for obtaining a global upper bound on the optimal objective value

for (P).

3.3 Upper Bounding: Linearization Heuristic (H)

An upper bound for an MI(N)LP minimization problem is provided by any integer-

feasible solution. One integer-feasible solution to (P) is to acquire no DG technologies

and meet all of the building’s demand with the macrogrid and boiler. The cost of this

“no DG” solution can be directly calculated, without solving (P), using the C5 and C6

portions of the objective function and setting Uout
t = dPt ∀t, Umax

n = max
t∈Tn
{dPt } ∀n, and
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G6t = dQt /η
Q
6 ∀t. However, the “no DG” solution provides a weak upper bound on the

total cost for the optimal solution to (P) if DG technologies are economically viable.

Thus, we wish to find an integer-feasible solution, if one exists, that includes some

DG technologies and provides a lower total cost, and therefore a tighter upper bound,

than the “no DG” solution. Integer-feasible solutions can be obtained by solving (P)

with existing MINLP solvers for small problem instances. However, based on our

testing, larger problem instances (i.e., one week and greater) cannot be solved with

the currently available solvers. Accordingly, we next present a linearization heuristic,

henceforth referred to as (H), for determining integer-feasible solutions to (P) that

can be applied to the large instances.

The intuition behind (H) is the observation that fixing the electric efficiency of the

SOFCs (E3t, E4t) and the tank water temperature (T5t) renders (P) linear. Simpler

models in the literature similarly fix the efficiencies of generators and fix, or ignore, the

temperature of thermal storage devices to avoid nonlinearity (e.g., [41]). When E3t

and E4t are fixed, constraint (2.5a) is linearized by clearing the denominator on the

right-hand side of the equation and constraint (2.6a) is linear without modification.

When T5t is fixed, constraints (2.10c) and (2.10d) fix the values of Bin
5t and Bout

5t ,

respectively. With T5t, B
in
5t, and Bout

5t all fixed, constraints (2.2b) and (2.6b) are linear

without modification and constraint (2.10a) is linearized by clearing the denominator

on the right-hand side of the equation. Thus, the (H) formulation is identical to (P)

with the exception of fixing 3|T | continuous variable values (E3t, E4t, and T5t) and

2|T | binary variable values (Bin
5t and Bout

5t ). Consequently, any feasible solution to the

MILP (H) is feasible for the MINLP (P).

Although we obtain (P)-feasible solutions from (H)-feasible solutions, the fixed

values for E3t, E4t, T5t, B
in
5t, and Bout

5t must be carefully selected in order to achieve

(H)-feasibility. Additionally, not every (P)-feasible solution produces a total cost

less than the “no DG” solution. In general, the fixed variable values used in (H) will
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produce lower cost (P)-feasible solutions if those fixed values are tailored to the power

and heating demands of the building of interest. Hence, we next present techniques for

selecting the fixed variable values used in (H) with the goal of obtaining (P)-feasible

solutions that incur a lower total cost than the “no DG” solution. In presenting

these techniques, we distinguish between two types of system design solutions: DG

systems with only power generation and storage (referred to as “power DG”) and DG

systems with both power and heat generation and storage (referred to as “CHP DG”).

Depending on the particular problem instance, one of these system design types may

produce a lower cost solution than the other.

For a “power DG” system, the selection of fixed values for E4t, T5t, B
in
5t, and Bout

5t is

trivial. Because there is no SOFC exhaust heat capture in this case, CHP SOFCs are

never acquired and the associated electric efficiency can simply be set to its minimum.

Also, because there is no water storage tank, the water enters the boiler at return

temperature in every hour and must be fully heated to delivery temperature. Less

trivial, however, is the selection of the fixed values for the power-only SOFC electric

efficiency (E3t). One might ignore the specific power demands of the building and

simply fix the efficiency to the same value (e.g., the minimum, average, or maximum

efficiency) in all hours. However, this approach forces the SOFCs to operate at the

same power output for all hours in which they are utilized (see constraint (2.5a))

and, therefore, is unlikely to produce a (P)-feasible solution with a total cost as low

as that produced by efficiency values which are tailored to the power demands. We

can obtain these tailored fixed values for E3t from the solution to (U). Given the

underestimation of constraint (2.5a) in (U), we cannot directly apply the values for

E3t from the solution to (U). However, the solution to (U) provides valid values for

P out
3t and N3t, referred to as P̆ out

3t and N̆3t, that we use along with constraint (2.5a) to

derive Ĕ3t. The fixed efficiency and temperature values are applied in (H) as part of

the following algorithm to obtain a (P)-feasible solution:
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“Power DG” (P)-feasible Solution Algorithm

1. Solve (U) and store resulting values for P̆ out
3t and N̆3t ∀t.

2. Set T5t = τ in5 , Bin
5t = 0, Bout

5t = 0, and E4t = ηmin
4 ∀t.

3. Set E3t = Ĕ3t =
(
ηmax
3 −µ3ηmin

3

1−µ3

)
−
(
ηmax
3 −ηmin

3

kout3 (1−µ3)

)
(P̆ out

3t /N̆3t) if N̆3t > 0, ηmin
3 otherwise

∀t.

4. Solve (H) and return its solution.

For “CHP DG” systems, the fixed values for E3t and E4t are both determined

from the solution to (U), as with Ĕ3t for “Power DG” systems. However, it may no

longer be advisable, in terms of the efficient use of the available thermal energy, to

trivially fix the values for T5t, B
in
5t, and Bout

5t to their minima. Fixing these variables to

their minimum values prevents the storage of heat across time periods (see constraint

(2.10a)) and likely wastes a large portion of the available exhaust heat from the CHP

SOFCs. We would prefer to use as much of the exhaust heat as possible to keep the

tank water as hot as possible and to reduce the heat provided by the boiler. Hence,

the fixed values for T5t, B
in
5t, and Bout

5t should be tailored to the heat supplied to the

water tank by the CHP SOFCs and the heat demanded from the water tank by the

building.

Any fixed values selected for T5t, B
in
5t, and Bout

5t must satisfy constraints (2.10a)

through (2.10e) to be (H)-feasible. In order to derive fixed values for T5t that satisfy

constraint (2.10a), we require values for the flowrate of heat from the CHP SOFCs

(F in
5t ), the flowrate of hot water from the tank (F out

5t ), and the tank size (V5). The

values for F in
5t and V5 are determined from the solution to (U). Given P̆ out

4t and Ĕ4t,

along with constraints (2.6a) and (2.9a), we calculate the maximum flowrate of ex-

haust gas from the CHP SOFCs in each hour and use this as the value for F in
5t . The

value for V5 is taken directly from the solution to (U). With a fixed inflow of heat
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and fixed tank size, we can iteratively calculate values for T5t that satisfy constraint

(2.10a), values for Bin
5t that satisfy constraint (2.10c), and values for Bout

5t that satisfy

constraint (2.10d). As part of the algorithm, we also calculate values for F out
5t that

satisfy constraint (2.2b); however, these values are not fixed in (H). Finally, in order

to ensure the satisfaction of constraint (2.10e), we set the tank temperature in the

initial time period (T5,1) equal to the temperature in the terminal time period (T5,|T |)

after the first execution of the algorithm. We then continue executing the algorithm

until the terminal tank temperature is equal to the initial tank temperature. Empiri-

cally, we find that the terminal temperature is so insensitive to the initial temperature

that only two repetitions total of the algorithm are necessary. The fixed efficiency and

temperature values are applied in (H) as part of the following algorithm to obtain a

“CHP DG” (P)-feasible solution:

“CHP DG” (P)-feasible Solution Algorithm

1. Solve (U) and store resulting values for P̆ out
jt , N̆jt ∀j, t, and V̆5.

2. Set Ejt = Ĕjt ∀j, t, F in
5t = γ4(P̆

out
4t /Ĕ4t) ∀t, V5 = V̆5, and T5,1 = τmax.

3. Loop ∀t ∈ T .

(a) Set Bin
5t = 1 if T5t > (τ in5 + ε), 0 otherwise.

(b) Set Bout
5t = 1 if T5t > τ out6 , 0 otherwise.

(c) Let F out
5t =

(
1−

[
1− τout6 −τmin

T5t−τmin

]
Bout

5t

)(
dQt

h5(τout6 −τ in5 )

)
.

(d) Set T5,t+1 =

max
{
τ in5 ,min{τmax, (1− α5B

in
5t)T5t +

δηQ5 h4F
in
5t (τ

out
4 −T5t)−δh5F out

5t (T5t−τ in5 )

h5V5
}
}

.

4. If T5,|T | = T5,1 then go to Step 5. Otherwise, set T5,1 = T5,|T | and return to Step

3.

5. Solve (H) and return its solution.
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Upon obtaining the “no DG,” “power DG,” and “CHP DG” (P)-feasible solutions

for a given problem instance, we choose the solution with the lowest cost to provide

the tightest upper bound on the optimal solution to (P).

3.4 Comparison with Existing Solvers

In this section, we provide solutions from (U) and (H) for a six-story, 122,000

square foot hotel located in Los Angeles, California. We then compare our solutions

to those provided by existing solvers. The hourly electricity and heating demands for

the hotel are simulated using a benchmark building model in EnergyPlus (see [42]).

The electricity demand includes lighting, equipment, and cooling, while the heating

demand includes both space and water heating. The hotel’s hourly power and heat

demands on a summer weekday and winter weekday are depicted in Figure 3.1.

Figure 3.1: Power and heating demands for a large hotel located in Los Angeles,
California.

Electricity prices are based on Southern California Edison’s rate schedule for com-

mercial customers (see [43]), while natural gas prices are based on Southern California
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Gas Company’s rate schedule for core commercial service (see [44]). The energy prices

from each utility on a summer weekday and winter weekday are provided in Figure 3.2.

According to Kaffine et al. [45], the average carbon emissions rate for power plants

in the California Independent System Operator (CAISO) territory, which serves Los

Angeles, is 0.15 kg/kWh (≈ 0.16 tons/MWh). This relatively low rate is due to the

lack of coal-fired plants and the prevalence of wind power and natural gas-fired plants.

We use a carbon tax of $0.02 per kg (≈ $20 per ton) and assume the building owner

is taxed for the generation of the purchased power.

Figure 3.2: Electricity and natural gas prices for commercial customers in southern
California.

For our DG system, the generators available for acquisition are power-only SOFCs,

CHP SOFCs, and fixed-tilt PV cells with the costs and performance characteristics

provided in Table 3.2. The average hourly availability of the PV cells, given the pre-

vailing weather, is determined by the PVWATTS Performance Calculator developed

by the National Renewable Energy Laboratory (see [46]). The amortized capital costs
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of all of the technologies are calculated according to equation (2.13) based on the ini-

tial capital costs and average lifetimes in Table 3.2, along with a 5% annual interest

rate. The initial capital costs applied here are lower than those typically found in

other research. However, we find that higher capital costs result in the “no DG”

solution for most instances, which limits the ability to demonstrate our bounding

techniques.

Table 3.2: Generator cost and performance parameter values.

Parameter Power SOFC CHP SOFC PV Cell

Initial Capital Cost [$/kW] 2,800 3,360 2,800
O&M Cost [$/kWh] 0.02 0.024 0.04
Nameplate Power Rating [kW] 10 10 10
Avg. Availability [%] 100 100 PVWATTS
Max Turn-Down [%] 20 20 0
Start-up Time [hours] 0.5 0.5 N/A
Max Ramp Rate [kW/h] 16 16 N/A
Max (Min) Electric Efficiency [%] 57 (41) 57 (41) N/A
Exhaust Output [kg/kWh] N/A 2.05 N/A
Avg. Exhaust Temperature [◦C] N/A 365 N/A
Avg. Lifetime [years] 15 15 15

The storage technologies available for acquisition are lead-acid batteries (electric)

and a hot water tank (thermal), with the costs and performance characteristics listed

in Table 3.3. For simplicity, we assume that there is no additional capital cost to

increase the size of the water tank beyond its minimum. Thus, the increased capital

cost for the CHP SOFC option is assumed to account for the cost of the water

tank, regardless of its size. The temperature of the water in the tank is assumed

to decrease by 1% per hour due to ambient heat loss. The values for the specific

heat of SOFC exhaust and tank water are 0.0003 kWh/(kg ◦C) and 0.0044 kWh/(gal

◦C), respectively. The average return and maximum temperatures for the water in

the tank are 16 ◦C and 85 ◦C, respectively, and we assume the hot water must be

delivered to all faucets and radiators at 60 ◦C.
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Table 3.3: Storage cost and performance parameter values.

Parameter Lead-acid Battery Water Tank

Initial Capital and O&M Cost $140/kWh $0/gal
Nameplate Capacity 10 kWh 500-1,000 gal
Min State-of-Charge or Temperature 30% 15◦C
Max Charge (Discharge) Rate 1 (2.5) kW N/A
Charge-Discharge or Thermal Efficiency 90% 80%
Avg. Lifetime 5 years 15 years

The boiler has an average thermal efficiency of 75% and O&M costs of $0.01

per kWh of heat supplied. We use a carbon emissions rate of 0.18 kg/kWh for the

combustion of natural gas (see [47]). Thus, the carbon emissions from the SOFCs and

boiler are determined by multiplying this emissions rate by the amount of natural gas

consumed.

We next solve (U) and (H) for instances with time horizons ranging from one

day to one year (see Table 3.1), and compare our solutions with those provided by

solving (P) directly using existing MINLP solvers. As we demonstrate in Appendix A,

(U), (H), and (P) are all coded in AMPL Version 20090327 (see [48]). (U) and (H) are

solved with CPLEX 12.2 (see [48]) on a 64-bit workstation under the Linux operating

system with four Intel processors running at 2.27 GHz and with 12 GB of RAM.

MINLP solvers which accept models (e.g., (P)) coded in AMPL include MINOTAUR,

BONMIN, Couenne, FilMINT, and MINLP-B&B. MINOTAUR (see [49]) resides on

our 64-bit workstation, while the other four solvers are publicly available on the NEOS

Server for Optimization (see [50] and [51]). In all instances, we provide the solvers

the “no DG” solution as an initial feasible solution, set an optimality gap of 1%, and

enforce a time limit of 36,000 seconds.

Of the five MINLP solvers we tested, MINOTAUR demonstrates the greatest

success in solving instances of (P). MINOTAUR solves up to the four-day instance,

but is unable to find an integer solution for the instances of one week or greater.
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BONMIN solves the one-day instance and obtains the same objective function value

as MINOTAUR, but is unable to find an integer solution for the instances of two days

or greater. Couenne is unable to converge on an optimal solution for the one-day

instance and terminates with a best integer solution worse (i.e., greater) than that

found by (H). FilMINT and MINLP-B&B terminate immediately for the one-day

instance with error messages stating “no feasible solution” and “ran out of memory,”

respectively. By contrast, (U) and (H) provide global lower bounds and integer

solutions, respectively, for (P) instances of up to one year. We compare the solutions

provided by (U) and (H) with those provided by MINOTAUR in Table 3.4. In all

instances, the solutions are expressed as a fraction of the total cost for the “no DG”

solution.

Table 3.4: (P)-feasible solutions provided by our techniques and by MINOTAUR for
time horizons of one day to one year. ∗In these instances, (U) reaches the 36,000
second time limit prior to achieving a 1% optimality gap. The time beyond 36,000
seconds is the solve time for (H). †In these instances, we use the best lower bound on
(U) at the point of termination as the global lower bound on (P). ‡In these instances,
an optimality gap of <1% is reported by MINOTAUR using the best continuous
relaxation solution as the lower bound. Given the nonconvex nature of (P), these
gaps are not an indication of the proximity to global optimality.

(U) and (H) MINOTAUR
Time Best Integer Solve Opt. Best Integer Solve Opt.

Horizon Solution Time Gap Solution Time Gap
(hours) (% of “no DG”) (sec) (%) (% of “no DG”) (sec) (%)

24 85.92 4 8.97 85.16 38 ‡
48 96.79 15 8.41 97.22 1,905 ‡
96 96.82 629 8.34 96.98 6,127 ‡
168 91.46 36,002∗ 9.42† ∞ 36,000 ∞
744 91.66 36,007∗ 11.34† ∞ 36,000 ∞

8,760 100.00 36,027∗ 12.07† ∞ 36,000 ∞

For each of the six instances, we solve (U) to obtain a global lower bound on (P).

We then use variable values from the solution to (U) to solve (H) and obtain an integer

solution (upper bound) for (P). For the three largest instances, (U) terminates at
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the 36,000 second time limit prior to achieving the optimality gap of 1%. In these

instances, we use the best lower bound on (U) at the point of termination as the global

lower bound on (P). Thus, the optimality gaps reported in the table are based on the

difference between the optimal objective function value of (H) and the appropriate

global lower bound provided by (U). By contrast, the optimality gaps reported for

MINOTAUR are based on the solver’s best integer solution (upper bound) and best

continuous relaxation solution (lower bound). Given the nonconvex nature of (P),

solutions from continuous relaxations of the problem may not provide valid global

lower bounds. Hence, MINOTAUR’s optimality gaps do not indicate the proximity

of the integer solutions to global optimality.

Our techniques and MINOTAUR are both capable of obtaining (P)-feasible so-

lutions for instances with time horizons of up to four days (96 hours). For these

small instances, our solutions are close to those obtained by MINOTAUR and require

a significantly shorter solve time. Additionally, only (U) and (H) provide the pos-

sibility of solving instances with time horizons of one week and greater. For these

instances, MINOTAUR terminates at the time limit without an integer-feasible solu-

tion. Though (U) terminates at the time limit without convergence for these larger

instances, we still obtain a global lower bound on (P) and information that can be

used in solving (H) to obtain an integer solution to (P). Therefore, our bounding

techniques provide two critical advantages over existing MINLP solvers: the capacity

to solve large instances of (P) and an indication of the proximity of those solutions

to global optimality.
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CHAPTER 4

SHORTFALLS IN SIMPLER MODELS

Prominent among the global optimization models in the DG literature is the Dis-

tributed Energy Resources Customer Adoption Model (DER-CAM) (see [27], [29],

[41], and [30]). DER-CAM is a mixed-integer linear programming (MILP) model

that is solved using the branch-and-bound algorithm to determine the number of DG

technologies to acquire, along with their operating levels over time, to meet the power

and heating demands of a building at minimum capital, operational, and environmen-

tal (i.e., emissions) cost. In contrast to other existing research, DER-CAM addresses

both the design and dispatch of a DG system, applies a provable global optimiza-

tion approach, includes both economic and environmental costs in its objective, and

considers the generation and storage of both power and heat using renewable and

nonrenewable technologies. Given all of these attributes, DER-CAM is the most flex-

ible of the design and dispatch models in the existing literature. But, DER-CAM

fails to consider many performance characteristics that constrain the dynamic (i.e.,

off-design) operation of DG technologies.

(P) addresses this shortcoming by prescribing a globally minimum cost system

design and dispatch while considering the maximum turn-down, start-up fuel con-

sumption, ramping capability, and part-load electric efficiency of power generation

technologies, and the time-varying temperature of thermal storage technologies. The

consideration of these dynamic performance characteristics can be particularly im-

portant when the technologies are operated in a load-following, rather than base-load,

manner. In some applications, the DG system configuration and capacity, the build-

ing’s energy demands, and/or the local utility’s rates, policies, and procedures may

require a load-following dispatch from the DG technologies. In these instances, (P)
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captures the real-world operation of the technologies more accurately than models

which simplify or ignore dynamic performance characteristics.

We begin this chapter by discussing system operating strategies and identifying

applications that may require a particular strategy. We then present a representative

MILP formulation of the design and dispatch problem, called (S), and qualitatively

compare this linear approach to the nonlinear approach (P). We conclude the chapter

with a case study that reveals the quantitative impact of ignoring system dynamics

in (S).

4.1 System Operating Strategies

For the DG systems examined in this research, we consider SOFCs as the primary

source of on-site power generation. Thus, one of the goals of solving specific instances

of (P) is to determine the appropriate operating strategy (e.g., baseload versus load-

following) for the SOFCs. Accurately modeling the operation of CHP technologies,

such as SOFCs, can require the consideration of numerous dynamic performance

characteristics. The implications for failing to model the dynamic aspects of power

and heat generation depend largely on how the SOFCs are operated. Accordingly,

we next discuss the performance limitations of SOFC power and heat dispatch in the

context of two operating strategies: baseload and load-following.

Baseload Strategy

A DG system with multiple sources of electricity import and export, such as that

in Figure 2.1, provides flexibility in how the SOFCs are operated. For instance,

Figure 4.1 depicts an operating strategy for which the SOFCs baseload at their rated

(i.e., maximum) capacity. In the region labeled (i), the SOFC power output falls

short of the building demand. Consequently, the remaining power demand must be

supplied by the PV cells, battery discharge, and/or the grid. The complementary case

is demonstrated in the region labeled (ii), where the SOFC power output exceeds the

building demand. In (ii), the surplus power generated by the SOFCs must be charged
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to the batteries or exported to the grid. Thus, a DG system with the technological

means to address shortages (i) and surpluses (ii) in power supply permits SOFCs the

flexibility to operate according to a variety of strategies, including baseloading.

Figure 4.1: SOFC power output given a baseload operating strategy. The SOFC
output falls short of the building load in periods of high demand (i) and exceeds the
building load in periods of low demand (ii).

If the SOFCs baseload, then limitations on dynamic performance may be of little

concern. When baseloading at rated capacity, the SOFCs are never turned down to

part load or standby, and do not change power or exhaust gas output between time

periods. With a fixed exhaust gas input to the storage tank, the heating demand of the

building is the only time-varying factor affecting the temperature of the tank water.

In this case, the rated power output and efficiency may be the only characteristics

required to accurately model the operation of the SOFCs. Thus, in applications for

which it is physically possible and economically beneficial to operate the SOFCs in

a baseload manner, the system design and dispatch solutions prescribed by (P) may

be similar to, if not the same as, solutions prescribed by simpler models that ignore
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dynamic performance limitations. However, certain conditions for the DG system

and energy market might prevent or discourage baseloading.

Load-following Strategy

Both physical and economic conditions could dictate a decrease in design options

compared to the system in Figure 2.1. Renewable sources of power, such as PV cells,

could have prohibitive capital costs and unpredictable supply. Similarly, high capital

costs and charge-discharge inefficiencies could render electricity storage technologies

unavailable or unattractive. Finally, local utility net-metering policies or intercon-

nection procedures could discourage or prevent excess power from being exported to

the grid. Under these conditions, the DG system has no means of disposing of excess

SOFC power and relies solely on the grid to address power shortages. Figure 4.2

depicts a system for which PV cells, batteries, and exportation of power to the grid

are not viable, and for which, consequently, SOFC baseloading may not be an option.

With a more limited DG system, such as that in Figure 4.2, there is far less

flexibility in how the SOFCs are operated. This is particularly true when the rated

SOFC capacity is greater than the minimum power load of the building, and the

effective price of electricity from the SOFCs is less than that of the utility. In this

case, the preferred operating strategy is that depicted in Figure 4.3, wherein SOFC

power output follows the building load (i.e., load-follows) in all hours for which the

demand is less than the rated capacity. In the region labeled (iii), where the building

demand exceeds the rated capacity of the SOFCs, the remaining power is provided

by the grid. Thus, a DG system with no technological means to address surplus

power and only limited means to address power shortages (iii), may force SOFCs to

load-follow.

Because load-following requires the SOFCs to operate at off-design power levels,

it can be important to consider dynamic performance characteristics like maximum
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Figure 4.2: Combined heat and power (CHP), distributed generation (DG) system
consisting of solid-oxide fuel cells (SOFCs) and a hot water storage tank.

turn-down, start up, ramping, and part-load electric efficiency and exhaust gas output

in order to avoid prescribing an unrealistic system dispatch. When SOFCs operate at

part load, it is possible that some of the SOFCs could be forced into standby mode

and, therefore, must later start back up when the required power output increases

above the maximum turn-down. Also, large increases and decreases in power output

throughout the day are constrained to the ramping capability of the SOFCs. As the

power output of the SOFCs changes over time, so too do their electric efficiency, their

rate of natural gas consumption, and their rate of exhaust gas production. Thus,

with load-following, the temperature of the water in the storage tank is determined

by both time-varying heat input and output.

The aspects of dynamic SOFC operation described above can be critical to real-

istically modeling the operation of a CHP system in applications that require load-

following. However, existing global optimization models of the design and dispatch
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Figure 4.3: SOFC power output given a load-following operating strategy. The SOFC
output falls short of the building load only in the periods of high demand (iii).

problem fail to consider the maximum turn-down, start-up fuel consumption, ramping

capability, and/or part-load electric efficiency of power generators, and/or do not in-

clude the quality (i.e., temperature) of stored thermal energy. Ignoring these aspects

of system operation allows for a linear formulation of the problem with fewer vari-

ables and constraints, but might lead to the prescription of a suboptimal or unrealistic

system design and dispatch.

4.2 Simplified Formulation (S)

In this section, we present a simplified design and dispatch model, called (S), that

does not include maximum turn-down, start up, ramping, or part-load efficiency,

and that models thermal storage in terms of energy inventory rather than tempera-

ture. The formulation of (S) as a representative model that ignores system dynamics

permits both qualitative and quantitative comparisons with (P). By making these

comparisons, we are able to highlight the scenarios for which a more detailed model,
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such as (P), is preferable to a simpler model, such as (S).

The (S) formulation presented here models the reduced DG system depicted in

Figure 4.2, rather than the more robust system in Figure 2.1. We examine the reduced

system, which does not include PV cells, batteries, or electricity export to the grid,

in order to focus on the modeling aspects that differ between (P) and (S). Thus,

for purposes of comparison with (S) in this chapter, (P) objective component C1

does not include the capital costs for PV cells or batteries, objective component C4

is removed, constraint (2.2a) includes only SOFC and utility-generated power, and

constraints (2.3b), (2.4a), (2.4b), (2.4c),(2.8a), (2.8b), and (2.8c) are removed. The

reduced version of (P) has 5|T |+ 2 fewer variables and 6|T |+ |N | fewer constraints

than the formulation presented in Chapter 2. However, the solution methodology

remains the same as that presented in Chapter 3.

We now present the mathematical formulation of (S) using the sets, parame-

ters, and variables defined in the nomenclature. The most significant difference in

nomenclature between (P) and (S) regards the representation of heat. In (S), heat

is represented directly by the variables Qout
jt and Qin

jt, rather than by the product of

specific heat capacity, flow, and temperature, as in (P).

Problem (S)

Minimum Total Cost

Minimize

∑
j=3,4

cjk
out
j Aj +

∑
j=3,4

∑
t∈T

mjδP
out
jt +

∑
j=3,4

∑
t∈T

(gt + zzg)δGjt (4.1a)

+
∑
t∈T

(pt + zzp)δUout
t +

∑
n∈N

pmax
n Umax

n +
∑
t∈T

(ηQ6 m6 + gt + zzg)δG6t (4.1b)

subject to

Power and Heating Demand
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∑
j=3,4

P out
jt + Uout

t = dPt ∀t ∈ T (4.2a)

Umax
n ≥ Uout

t ∀n ∈ N , t ∈ Tn (4.2b)

Qout
5t +Qout

6t = dQt ∀t ∈ T (4.2c)

Power Capacity

P out
jt ≤ koutj Aj ∀j = 3, 4, t ∈ T (4.3a)

Natural Gas Consumption

ηPj Gjt = P out
jt ∀j = 3, 4, t ∈ T (4.4a)

ηQ6 G6t = Qout
6t ∀t ∈ T (4.4b)

Heat Capacity

Qin
5t ≤ ηQ4 G4t ∀t ∈ T (4.5a)

Heat Storage

Q5,t+1 − (1− α5)Q5t = δ(ηQ5 Q
in
5t −Qout

5t ) ∀t < |T | (4.6a)

Q5t ≤ smax
5 A5 ∀t ∈ T (4.6b)

Q5,1 = Q5,|T | (4.6c)

Heat Storage Acquisition

A5 ≤ A4 ≤

⌈
max
t∈T
{dPt }

kout4

⌉
A5 (4.7a)

Non-negativity and Integrality
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Uout
t , P out

jt , Gjt, Qjt, Q
out
jt , Q

in
jt ≥ 0 ∀j ∈ J , t ∈ T (4.8a)

Umax
n ≥ 0 ∀n ∈ N (4.8b)

Aj ≥ 0, integer ∀j = 3, 4 (4.8c)

Aj binary ∀j = 5 (4.8d)

The (S) formulation includes 7|T |+ 1 fewer variables and 16|T |− 4 fewer constraints

than the reduced version of (P). Additionally, (S) contains only two general integer

variables, one binary variable, and is comprised of only linear constraints. With so

few integer variables and a convex constraint set, instances of (S) are much simpler

to solve than those of (P).

4.3 Qualitative Differences Between (P) and (S)

Qualitatively, (P) and (S) differ in how they model the generation of power and

heat by the SOFCs, and the storage of heat in the water tank. In this section, we

provide a detailed discussion of these qualitative differences. We then examine the

quantitative impact of the modeling differences in Section 4.4.

Power Generation

An examination of SOFC natural gas consumption at various power output levels

highlights the differences in how (P) and (S) model power generation. Figure 4.4

depicts the hourly natural gas consumption of a representative SOFC as a function

of its power output.

In (P), the left-hand side of constraint (2.4d) enforces a minimum power output

for the SOFCs that are operating (i.e., not in standby mode) in a given time period.

Given the minimum operating temperature required for power generation, SOFCs

cannot operate at power levels below this maximum turn-down. Thus, the range of

power output levels below the maximum turn-down (i.e., between zero and minimum

power output) is appropriately restricted in (P). However, because constraint (4.3a)

in (S) ignores the operational status and maximum turn-down of the SOFCs, power
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Figure 4.4: Comparison of SOFC natural gas consumption at minimum, median, and
maximum power output as modeled in (P) versus (S).

dispatch solutions (i.e., prescribed values for P out
jt ) are permitted to select output

levels below the maximum turn-down (as depicted in Figure 4.4). Such solutions

cannot be implemented in reality.

Constraints (2.4d) and (2.4e) in (P) and constraint (4.3a) in (S) similarly limit the

maximum aggregate power output of the SOFCs to the total nameplate power rating

of the SOFCs that are acquired. Furthermore, because (S) fixes the electric efficiency

of the SOFCs to the rated efficiency (i.e., the efficiency at maximum power output),

the natural gas consumption at maximum power output is the same as in (P). How-

ever, the natural gas consumption of the SOFCs at part-load differs between the two

formulations. In (P), constraints (2.5a) and (2.6a) dictate that natural gas consump-

tion decreases nonlinearly as power output decreases. By contrast, constraint (4.4a)

in (S) indicates that natural gas consumption decreases linearly as power output de-

creases. The result of these differences is that (S) overestimates the fuel consumption
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whenever the SOFCs operate at part-load (as depicted in Figure 4.4). Thus, when

SOFCs load-follow, the time-varying electric efficiency captured in (P) allows for a

more accurate calculation of fuel consumption.

The overestimation of SOFC fuel consumption in (S) is partially offset in time

periods in which a positive number of SOFCs start up. In (P), the variable Ńjt found

in objective component C3 and constraint (2.7a) enforces a fuel requirement for the

SOFCs to depart standby mode and achieve operating temperature. If a SOFC’s

operational status changes from “standby” to “on” between successive time periods

in constraint (2.7a), then objective component C3 accounts for the cost associated

with the natural gas consumed by the SOFC to achieve the maximum turn-down.

We calculate the gas required for start up by assuming a SOFC requires σj hours to

increase power from zero to µjk
out
j , and that fuel is consumed during start up with the

same efficiency ηmin
j as at rated power output. However, objective component (4.1a) in

(S) does not account for the fuel required for SOFC start up, nor do any constraints.

Thus, in (S), the underestimation of start-up fuel consumption partially offsets the

overestimation of steady-state fuel consumption in any hour in which SOFCs start

up.

Another key difference in how (P) and (S) model power generation pertains to the

ramping capability of the SOFCs. In (P), ramping is explicitly limited in constraint

(2.7b), which we restate here:

−δrdown
j Njt ≤ P out

j,t+1 − P out
jt ≤ δrupj Nj,t+1 ∀j = 3, 4, t < |T |.

On the other hand, (S) only implicitly restricts changes in SOFC power output. Based

on constraints (4.3a) and (4.8a), we can derive the following ramping restrictions:

− koutj Aj ≤ P out
j,t+1 − P out

jt ≤ koutj Aj ∀j = 3, 4, t < |T |. (4.9)
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Equation (4.9) indicates that, in (S), SOFC power output is permitted to increase or

decrease by the aggregate nameplate power rating of the SOFCs that are acquired.

However, depending on the demand time increment and the number of operational

SOFCs, a ramp (i.e., P out
j,t+1 − P out

jt ) of this magnitude may not be achievable. Con-

straint (2.7b) in (P) accounts for this ramping limitation. If −δrdown
j Njt > −koutj Aj

or δrupj Nj,t+1 < koutj Aj in a given time period, then (P) provides tighter restrictions

on SOFC ramping than (S) does. Given typical SOFC ramp rates, it is unlikely that

(P) provides tighter ramping restrictions in instances which consider hourly power

demand (i.e., δ = 1) and for which it is beneficial to operate all of the acquired

SOFCs (i.e., Njt = Aj) in all time periods. However, the consideration of sub-hourly

power demand (i.e., δ < 1) and SOFC standby mode (i.e., Njt < Aj) increase the

likelihood that (S) overestimates the ramping capacity. This situation could result

in (S) prescribing dispatch schedules that cannot be implemented in reality.

Heat Generation and Storage

In addition to the differences in modeling power generation, (P) and (S) differ in

how they account for the generation and storage of heat. The most fundamental

difference is how heat itself is represented in the two formulations. In (S), the flow of

heat is represented directly by the variables Qout
jt and Qin

jt, and the amount of thermal

energy stored is represented by Qjt. In (P), however, heat (or thermal energy) is

determined as the product of a fluid’s specific heat capacity, flowrate (or volume),

and temperature change. This alternative representation of heat and thermal energy

permits the consideration of more detailed performance characteristics of thermal

systems. Specifically, the heat charged to and discharged from the storage tank can

be modeled as a function of the flowrate and temperature of the exhaust gas supplied

by the SOFCs and the hot water demanded by the building.

Figure 4.5 depicts the maximum thermal energy that can be charged to the storage

tank in an hour by the exhaust gas from a representative SOFC operating at mini-
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mum, median, and maximum power output. In (S), the thermal energy that can be

Figure 4.5: Comparison of heat charged to storage tank for SOFC operating at min-
imum, median, and maximum power output as modeled in (P) versus (S).

added to the storage tank by SOFC exhaust gas is independent of the temperature of

the water in the tank, and is based solely on the rated thermal efficiency of the SOFC

(see constraints (4.5a) and (4.6a)). As a result, the maximum thermal energy that can

be charged to the tank is fixed for a given SOFC power output (as demonstrated in

Figure 4.5). Conversely, in (P), the thermal energy that can be added to the tank is

directly determined by the temperature of the tank water (see constraints (2.9a) and

(2.10a)). The greater the temperature differential between the SOFC exhaust gas and

the tank water, the greater the heat that can be applied to the tank. Consequently,

the maximum thermal energy that can be added to the tank decreases as the water

temperature increases (as demonstrated in Figure 4.5). In general, these differences

between the two formulations result in (S) overestimating the amount of heat that
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can be charged to the storage tank. However, when the tank water is below delivery

temperature and SOFC power output is at or near its maximum, (S) underestimates

the available heat.

Accounting for water temperature also leads to differences in how (P) and (S)

model the tank discharge. Figure 4.6 presents the minimum thermal energy that

must be discharged from the storage tank in an hour to meet representative mini-

mum, median, and maximum demands. In (S), there is no minimum requirement

Figure 4.6: Comparison of heat discharged from storage tank to meet minimum,
median, and maximum demands as modeled in (P) versus (S).

on the portion of heating demand that must be met by the storage tank (see con-

straints (4.2c) and (4.6a)). Thus, the tank is permitted to provide as little as zero

kilowatt-hours of thermal energy (as depicted in Figure 4.6) or as much as the full

inventory of stored energy in the tank, regardless of the water temperature. By con-

trast, constraints (2.2b) and (2.10a) in (P) enforce a minimum provision of heat by
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the storage tank whenever the tank water temperature is above the average return

temperature. For hours in which the tank water is between the return and delivery

temperatures (as determined by constraints (2.10c) and (2.10d)), the storage tank

provides a positive flow of hot water (and thus heat), with the boiler providing the

remaining heat required to deliver the water (see constraint (2.6b)). As the tank

water temperature increases, the portion of heating demand met by the storage tank

increases (as depicted in Figure 4.6), and the portion met by the boiler decreases. For

hours in which the tank water is at or above delivery temperature, all of the heating

demand is met by the storage tank. In this case, no additional heating is required by

the boiler. Thus, for hours in which both the tank water temperature and heating

demand are high, (S) likely underestimates the portion of demand met by the stor-

age tank. However, in periods of lower heating demand and water temperature, it is

possible for (S) to overestimate the tank heat discharge.

For the representative cases demonstrated in Figure 4.5 and Figure 4.6, the net

result of the limitations on tank heat charge and discharge is that the time-varying

inventory of stored thermal energy is more accurately modeled in (P) versus (S).

This is particularly true when the SOFC power output and building heating demand

are high. When SOFC power output is at its maximum, the slope of the (P)-line

in Figure 4.5 is at its greatest (in absolute value). The same is true of the slope

of the (P)-line in Figure 4.6 when the heating demand is at its maximum. Due to

the steep slopes of these lines, the thermal energy charged to or discharged from the

storage tank is more sensitive to changes in the water temperature compared to when

SOFC power output and heating demand are low. This sensitivity can lead to wild

fluctuations in the thermal energy available from the tank. Because the limits on

maximum charge and minimum discharge in (S) are independent of the tank water

temperature, (S) is less capable of capturing these fluctuations in available thermal

energy. As a result, there exist instances for which (S) inaccurately represents the
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real-world operation of the tank.

The final difference between (P) and (S) concerns the way in which the two

formulations model the capacity of the thermal storage device. In (S), the maximum

allowable inventory of thermal energy in the storage tank (i.e., the tank size) is a

fixed parameter smax
5 (see constraint 4.6b), the value of which is selected by the user

a priori. Alternatively, (P) models the tank size as a variable V5 (see constraint

2.11b), the value of which is optimally selected by the algorithm. When modeling

the temperature and flowrate of fluids into and out of the tank, the size of the tank

determines the increase or decrease in stored thermal energy. Thus, (P) optimally

sizes the storage device based on the heat supplied by the SOFCs and the heat

demanded by the building.

4.4 Quantitative Differences Between (P) and (S)

In this section, we contrast solutions from (P) and (S) for a six-story, 122,000

square foot hotel located in southern Wisconsin. The power and heating loads for

this building type, and the local utility rates, policies, and procedures, encourage the

load-following behavior by the SOFCs previously discussed in Section 4.1. Hence,

this scenario highlights the deficiencies exhibited by (S) in modeling dynamic perfor-

mance. We first present the building, utility, and technology parameter values applied

in the case study, and then provide the results from solving (P) and (S).

The hourly (δ = 1) power and heating demands (dPt and dQt ) for the building

are simulated using a benchmark building model in EnergyPlus (see DOE [42]). The

power demand includes lighting, equipment, and cooling, while the heating demand

includes both space and water heating. Annual power and heating demand statistics

for the hotel are provided in Table 4.1, while the hotel’s hourly demands on the peak

power day of the year are depicted in Figure 4.7.

The average electricity and natural gas prices listed in the top portion of Table 4.2

are based on Wisconsin Electric Power Company’s rate schedule for general commer-
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Table 4.1: Annual power and heating demand statistics for a large hotel located in
southern Wisconsin.

Statistic Power Demand Heating Demand

Maximum [kW] 264 1,086
Minimum [kW] 52 50
Average [kW] 142 256
Total [MWh] 1,244 2,245

cial service (see [52]) and Wisconsin Electric-Gas Operations’ rate schedule for firm

sales service (see [53]). These energy charges are also consistent with statistics re-

ported by the Energy Information Administration (EIA) for the state of Wisconsin

(see [54] and [55]). The aforementioned EIA reports additionally provide the basis for

our calculation of the Wisconsin electric industry’s average rate of carbon emissions

(see Appendix B).

According to the Network for New Energy Choices (NNEC), the state of Wiscon-

sin’s net-metering policies and interconnection procedures discourage customer-sited

DG (see [56]). The NNEC cites Wisconsin Public Service Commission standards

which limit DG system capacity, restrict customer energy credits, require excessive

customer insurance, and include hidden interconnection fees. The limitation with the

greatest impact for our case study is a 20 kW maximum system capacity. As we

demonstrate in the numerical results, the optimal DG system capacity for the large

hotel is much greater than 20 kW. Because the DG system exceeds the allowable

capacity, net-metering is not permitted, and the SOFCs have no means to dispose of

excess power.

The costs and performance characteristics of the SOFCs and water tank are listed

in the bottom portion of Table 4.2. The annualized capital costs for the SOFCs

applied here are lower than those typically reported in the current literature. However,

we find that larger capital costs result in both (P) and (S) choosing the grid-only
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Figure 4.7: Power and heating demands on the peak power day for a large hotel
located in southern Wisconsin.

solution (i.e., no SOFCs acquired). The initial acquisition and installation cost used

for the SOFCs is $1,600/kW. The cost increase for CHP integration, including the

water tank, is 20%. The initial capital costs are continuously compounded at 5%

interest over a 15-year system lifetime to obtain a lifetime opportunity cost, which

is then divided by the 15 years to determine the annual costs reported in Table 4.2.

We assume these reduced capital costs in order to induce DG acquisition according

to both (P) and (S), thereby providing a means to contrast the system design and

dispatch selected by the two formulations.

Each of the performance characteristics of the SOFCs and water tank listed in

the table are captured in (P). On the other hand, (S) ignores the maximum turn-

down, start up, ramping, and part-load efficiency of the SOFCs, and ignores the

temperature of the water in the storage tank. Given these exclusions, (S) simply

models the operation of the SOFCs with the maximum power output (koutj ), and

fixed electric and thermal efficiencies (ηPj , η
Q
j ) of 0.41 and 0.19, respectively. These

70



Table 4.2: Cost, emissions, and technology parameter values.

Parameter Value Units

pt, gt ∀t 0.10, 0.03 $/kWh
pmax
n ∀n 6.00 $/kW/month
z 0.02 $/kg
zp, zg 0.74, 0.18 kg/kWh
c3, c4 226, 271 $/kW/year
m3,m4,m6 0.020, 0.024, 0.010 $/kWh
kout3 , kout4 10, 10 kW
σ3, σ4 2, 2 hours
µ3, µ4 0.2, 0.2 n/a
rup3 , r

up
4 , r

down
3 , rdown

4 4, 4, 4, 4 kW/hour
ηmax
3 , ηmax

4 , ηmin
3 , ηmin

4 0.57, 0.57, 0.41, 0.41 n/a
vmax
5 , vmin

5 4200, 1000 gallons

ηQ5 , η
Q
6 0.80, 0.75 n/a

α5 0.01 n/a
γ4 2.05 kg/kWh
h4 0.0003 kWh/(kg ◦C)
h5 0.004 kWh/(gal ◦C)
τ out4 , τ in5 , τ

out
6 365, 20, 60 ◦C

τmax, τmin 85, 15 ◦C

efficiencies are consistent with the SOFCs operating at maximum power output and

the exhaust heat transferring to tank water at delivery temperature. In (S), the fixed

storage capacity (smax
5 ) of the tank is expressed in terms of thermal energy, rather

than water volume, and is set to a value equivalent to the maximum hourly heating

load (1,086 kWh) for the year. This capacity is consistent with the upper bound on

tank volume in (P), given the maximum allowable temperature of the water.

Next, we present the optimal system design and dispatch prescribed by (P) and

(S) for the hotel, based on a typical year’s hourly demand (8,760 hours). Both

formulations are coded in AMPL Version 20090327 and solved with CPLEX 12.3 (see

IBM [48]) on a 64-bit workstation under the Linux operating system with four Intel

processors running at 2.27 GHz and with 12 GB of RAM. We apply the heuristic

linearization and convex underestimation techniques presented in Chapter 3 to solve
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(P).

The optimal system design determined by (P) includes 130 kW of on-site capacity

(13 CHP SOFCs) and a 3,900 gallon water storage tank. Based on the maximum

allowable water temperature of 85 ◦C and the average return temperature of 20 ◦C,

the 3,900 gallon tank has a maximum thermal energy capacity of roughly 1,014 kWh.

By contrast, (S) chooses only 110 kW of capacity (11 CHP SOFCs) and the pre-

determined 1,086 kWh tank. Both of the system designs prescribed by the two

formulations afford a total annual cost less than that incurred by the grid and boiler

alone. However, the total annual cost (including capital and operational costs) for the

13-SOFC system determined by (P) is less than the total annual cost of the 11-SOFC

system determined by (S). Thus, according to (S), a DG system with 20 kW smaller

on-site capacity costs more to acquire and operate than the larger system selected

by (P). The suboptimal system design determined by (S) results from its failure to

consider the dynamic performance of the SOFCs and water tank. We demonstrate

this by fixing the system design in (S) to the 13-SOFC system, resolving (S), and

comparing the system dispatch results with those of (P) for the peak power day of

the year (hours 5,137 through 5,160).

Figure 4.8 demonstrates that (P) and (S) select the same aggregate power dispatch

for the 13 SOFCs over the 24-hour period. Namely, the optimal aggregate SOFC

power output is the minimum of the aggregate nameplate power capacity and the

power demand (i.e., P out
4t = min(130, dPt )). However, the natural gas consumed by

the SOFCs to generate that power differs between the two formulations. As previously

predicted in Figure 4.4, (S) overestimates the natural gas consumption in any hour

in which the SOFCs operate below maximum power output. In fact, in the early

hours of the day, (S) overestimates the SOFC gas consumption by as much as 29%

compared to (P). The more hours the SOFCs operate at part-load, the more (S)

overestimates the fuel requirements for the SOFCs.
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Figure 4.8: Optimal SOFC power output and natural gas consumption as determined
by (P) versus (S).

For this particular building power load, the aggregate power output of the SOFCs

never reaches the maximum turn-down. With 130 kW of rated capacity and a 20%

maximum turn-down, the aggregate power output must decrease below 26 kW before

any number of SOFCs is forced into standby mode. Because the minimum hourly

power load for the year is 52 kW, this particular system does not demonstrate SOFC

standby mode or, consequently, SOFC start-up. However, for other simulated load

profiles (or in the real-world application of the system) the power demand could fall

below the 26 kW threshold. In these cases, the ability to model the effects of SOFC

standby and start-up is important.

As we discuss in Section 4.3, the ramping constraints on the SOFCs are not

likely to bind at the hourly level of fidelity. The largest hourly ramp up (44 kW)

and ramp down (37 kW) on the peak power day are within the 52 kW total hourly

ramping capacity of the 13 SOFCs. However, the consideration of a 30-minute, or

less, demand time increment (i.e., δ < 0.5) would tighten the ramping constraints
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in (P), and potentially impact the feasibility of the hourly fidelity solution. With a

maximum ramp rate of 4 kW/hr, the 30-minute ramping capability of each SOFC

is only 2 kW (assuming an equal distribution over the hour). Thus, with 13 SOFCs

operating, the total 30-minute ramping capability is only 26 kW. If we were to solve

both (P) and (S) to determine the system dispatch at the 30-minute level of fidelity,

(P) would appropriately limit the power ramping capabilities of the SOFCs to 26 kW.

However, for large increases or decreases in power demand, (S) might allow infeasible

increases or decreases in SOFC power output that exceed the 26 kW limitation.

The overestimation of SOFC fuel requirements by (S) also contributes to differ-

ences in the thermal dispatch prescribed by the two formulations. Figure 4.9 depicts

the optimal exhaust heat dispatch from the SOFCs to the water tank as determined

by (P) versus (S). (S) overestimates the heat charged to the tank at low SOFC power

Figure 4.9: Optimal SOFC exhaust heat transferred to storage tank as determined
by (P) versus (S).

output and underestimates it at high SOFC power output (as previously shown in

Figure 4.5). In the early hours of the day, when SOFC power output is low, (S) over-

74



estimates the exhaust heat charged to the storage tank by as much as 20%. During

the two peak power demand periods of the day, when SOFC power output is at or

near maximum, (S) underestimates the exhaust heat charged to the tank by as much

as 8%. The more hours the SOFCs operate at or near rated capacity, the more (S)

underestimates the heat that can be generated by the SOFCs.

In the description of Figure 4.6, we stated that (S) likely underestimates the heat

discharged from the storage tank in periods of high heating demand and/or high

tank water temperature, and likely overestimates the heat discharge in periods of low

heating demand and/or low tank water temperature. Figure 4.10 depicts the flowrate

and temperature of the tank water on the peak power day, as determined by (P). The

Figure 4.10: Optimal storage tank water flowrate and temperature as determined by
(P).

flowrate of the tank water closely follows the heating demand of the building, while

the tank water temperature increases during periods of low demand and decreases

during periods of high demand. Figure 4.11 demonstrates the impact of the water

flowrate and temperature on the tank heat discharge, as determined by (P), and
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contrasts the prescribed heat discharge with that of (S). During the two peak heating

Figure 4.11: Optimal storage tank heat dispatch as determined by (P) versus (S).

demand periods of the day, (S) underestimates the tank heat discharge by as much

as 37%. However, in the middle of the day, when the heating demand is relatively

low and the tank water is still well below delivery temperature, (S) overestimates

the tank heat discharge by as much as 111% when compared to (P). Any hour in

which (S) overestimates the heat provided by the storage tank, it underestimates the

additional heat that must be provided by the boiler, and thus underestimates the fuel

requirements for the boiler.

The cumulative effects of the hourly dispatch differences between (P) and (S),

over the entire year, are summarized in Table 4.3. (S) overestimates the total natural

gas energy required for the SOFCs by 5%, underestimates the total thermal energy

provided by the SOFCs by 4%, overestimates the total thermal energy provided by

the storage tank by 7%, and underestimates the total natural gas energy required for

the boiler by 1%. These miscalculations of the system’s energy requirements cause
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Table 4.3: Summary of solution differences between (P) and (S) for the annual
instance of the case study when the system design in (S) is fixed to the same system
design as that selected by (P).

Statistic (P) (S) Difference

Total SOFC Gas Input [MWh] 2,222 2,327 +5%
Total SOFC Heat Output [MWh] 461 442 -4%
Total Tank Heat Output [MWh] 332 354 +7%
Total Boiler Gas Input [MWh] 2,552 2,522 -1%

Total Annual Cost [$] 276,683 278,975 +1%

(S) to overestimate the total annual operational costs of the system by 1%. Although

the difference in operational costs between (P) and (S) may appear relatively small,

the overestimation of cost is enough to cause (S) to favor the smaller (110 kW) sys-

tem capacity when the larger (130 kW) system is not fixed. Thus, the failure to

consider the off-design performance characteristics of the DG technologies causes (S)

to undersize the system capacity by 15% compared to (P).

Simpler, linear models of the design and dispatch problem, such as DER-CAM, of-

fer the possibility of solving large problem instances with relative ease. Even one-year

instances of the linear formulation can be solved directly with existing commercial

solvers and require significantly shorter solve times than those of equivalent instances

of (P). However, a linear formulation of the design and dispatch problem cannot

capture many of the critical, off-design performance characteristics of generation and

storage technologies. As we demonstrate in this chapter, for certain instances, the

failure to consider these characteristics can result in the prescription of an infeasible

system dispatch and a suboptimal system design. Therefore, although the added

complexity of (P) leads to longer solve times, compared to models like DER-CAM,

it also leads to a more realistic system design and dispatch.
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CHAPTER 5

ECONOMIC SCREENING CRITERIA

Chapter 4 demonstrates the advantages of realistically modeling the design and

dispatch of a DG system with (P). Given its greater level of detail compared to

existing models, (P) provides a novel means of conducting sensitivity analyses to

evaluate the economic viability of DG. These sensitivity analyses can be accomplished

by varying the parameter values for demand, pricing, and performance to create an

array of problem instances, and then solving those instances of (P) to determine which

combinations of parameter values result in DG acquisition. However, large instances

of (P) can be time consuming and computationally expensive to solve. In Section 3.4,

we present a one-year time horizon, hourly fidelity instance of (P) which has nearly

200,000 variables and 300,000 constraints, and which requires more than 10 hours

to reach a solution that is within 12% of global optimality. Additionally, for many

instances, the combination of energy market, building type, and DG technology under

consideration results in an optimal design and dispatch solution that does not include

the acquisition of DG. In Sections 3.4 and 4.4, we are forced to use dramatically

reduced capital and installation costs in order to witness DG acquisition. Thus, a

great deal of time and computing power can be expended solving various building-

market-technology instances of (P) in order to discover a combination for which

DG is economically viable. For this reason, it would be beneficial to identify which

combinations are likely to be economically viable prior to solving (P) to determine

the optimal design and dispatch.

In this chapter, we develop parametric conditions for the economic viability of

a CHP DG system based on the objective function of (P). This comparative static

analysis requires the substitution of parameters for the variables in the objective
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function. Because the analysis requires fixed parameters, only a single design and

dispatch strategy can be tested at one time. Thus, for a given analysis, we must

choose a system configuration, capacity, and operational strategy for which we evalu-

ate economic viability. We then derive necessary conditions on the model parameters

for the selected design and dispatch to result in operational savings that exceed the

capital and installation costs. These conditions provide insight regarding economi-

cally attractive building, market, and technology characteristics and afford screening

criteria for the instances of (P) we wish to solve. Armed with a viable system design

and dispatch, we can solve (P) to determine the optimal design and dispatch.

The specific CHP DG system considered in our comparative static analysis is

depicted in Figure 5.1. For this system, if DG is not acquired, then the building

Figure 5.1: Combined heat and power (CHP), distributed generation (DG) system
consisting of solid-oxide fuel cells (SOFCs).

has its power demand met by the utility and its heating demand met by an existing

natural gas-fed boiler. We wish to consider retrofitting the building with a natural gas-
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fed, SOFC system. The system’s primary product is power, which reduces the electric

energy that must be imported from the utility, and which provides a source of revenue

when electricity can be exported from the SOFCs to the utility. Additionally, when

waste heat capture is included in the system, high temperature exhaust gas from the

SOFCs is supplied to the building to reduce the thermal energy that must be provided

by the boiler. In the next two sections, we derive general conditions for which the

operational savings provided by the SOFCs exceed their capital and installation costs.

We then demonstrate those conditions numerically with eight real-world scenarios.

5.1 Cost Analysis

In this section, we examine the total cost of supplying the power and heating

demands of the building in Figure 5.1, based on the objective function of (P). De-

pending on the system design (i.e., whether or not DG is acquired), the total cost

may or may not include acquisition and operation costs for the SOFCs. By compar-

ing the total costs of the system with and without the SOFCs, we are able to derive

conditions for the economic viability of the technology.

Applying the notation for sets, parameters, and variables defined in the nomencla-

ture, and the previous convention that the elements of the set J are defined numer-

ically as 4=CHP SOFC and 6=Boiler, the total cost to meet the power and heating

demands of the building in Figure 5.1 is calculated according to equation (2.1). How-

ever, because we are only examining the viability of CHP SOFCs, the total cost does

not include the acquisition and operation costs associated with batteries, PV cells,

power-only SOFCs, or water tanks. Thus, the cost function defined in (5.1a) through

(5.1d) is the same as that defined in (2.1), with the exception of removing all terms

with J -elements 1=Battery, 2=PV, 3=Power SOFC, and 5=Water Tank.
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Cost = c4k
out
4 A4 +

∑
t∈T

[
δm4P

out
4t + (gt + zzg)

(σ4µ4k4
2ηmin

4

Ń4t + δG4t

)]
(5.1a)

+
∑
t∈T

δ[(pt + zzp)Uout
t − νtptU in

t ] (5.1b)

+
∑
n∈N

pmax
n Umax

n (5.1c)

+
∑
t∈T

δ(ηQ6 m6 + gt + zzg)G6t (5.1d)

Total cost component (5.1a) accounts for the capital and installation, O&M, fuel, and

carbon emissions costs for the SOFCs. Component (5.1b) captures the energy and

carbon emissions costs for electricity imported from the power utility, as well as the

electricity export revenues from the SOFCs. Component (5.1c) calculates the monthly

peak demand charges from the power utility. Component (5.1d) determines the O&M,

fuel, and carbon emissions costs associated with the thermal energy produced by the

boiler.

The power demands of the building in Figure 5.1 must be met by the SOFCs

and/or the power utility. The power supply and demand are governed by the following

relationships.

P out
4t + Uout

t − U in
t = dPt ∀t ∈ T (5.2a)

P out
4t = ηP4tG4t ∀t ∈ T (5.2b)

Uout
t = max{0, dPt − P out

4t } ∀t ∈ T (5.2c)

−U in
t = min{0, dPt − P out

4t } ∀t ∈ T (5.2d)

Umax
n = max

t∈Tn
{Uout

t } ∀n ∈ N (5.2e)

These same relationships are enforced by the combination of constraints (2.2a), (2.3a),

(2.5a), and (2.6a) in (P) when SOFCs are the only technology under consideration.

Equation (5.2a) demonstrates that the power produced by the SOFCs and the net-

power from the utility must sum to the building’s demand. The power output by the

SOFCs equates to the product of their fuel input and electric efficiency, according to
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equation (5.2b). In this case, we use the notation ηP4t for the electric efficiency, rather

than E4t, to represent the fixed value that results from calculating the efficiency

according to constraint (2.5a). Power cannot be both imported from and exported

to the utility in the same hour. Thus, if the demand exceeds the SOFC output in a

given hour, power is imported from the utility according to equation (5.2c). If the

SOFC output exceeds the demand, then power is exported to the utility according

to equation (5.2d). Equation (5.2e) determines the peak power imported from the

utility in each month.

The heating demands of the building in Figure 5.1 must be met by the SOFCs

and/or the boiler. The heating supply and demand are governed by the following

relationships.

Qout
4t +Qout

6t = dQt ∀t ∈ T (5.3a)

Qout
4t = ηQ4 G4t ∀t ∈ T (5.3b)

Qout
6t = ηQ6 G6t ∀t ∈ T (5.3c)

These relationships are similar to those enforced by the combination of constraints

(2.2b), (2.6a), (2.6b), (2.9a), and (2.10a) in (P). However, because thermal storage

is not included in the system depicted in Figure 5.1, the flow of heat is modeled

in a different manner. In (P), the heat from the SOFCs or boiler is modeled as

the product of specific heat capacity, flowrate, and temperature change, in order

to account for the time-varying temperature of the thermal storage tank. Without

thermal storage, the fluid temperatures throughout the system can be modeled as

static. With static temperatures, the heat from the SOFCs or boiler can be modeled

directly via the variable Qout
jt . Equation (5.3a) shows that the heat produced by the

SOFCs and the boiler must sum to the building’s heating demand. The heat output

by each generator in a given hour is equivalent to the product of its fuel input and

rated thermal efficiency, according to equations (5.3b) and (5.3c). In this case, we
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assume that the thermal efficiency of the SOFCs includes the efficiency of the heat

exchanger.

The power supply and demand relationships established in equations (5.2a) through

(5.2e), and the heating supply and demand relationships established in equations

(5.3a) through (5.3c), permit the substitution of parameters for variables in total

cost function components (5.1a) through (5.1d). For instance, if no SOFCs are ac-

quired (i.e., A4 = G4t = P out
4t = Ń4t = U in

t = 0 ∀t), then all of the power demand is

met by the power utility, according to (5.2a), and all of the heating demand is met by

the boiler, according to (5.3a). In this case, total cost component (5.1a) is zero, com-

ponent (5.1b) does not include U in
t , and we substitute Uout

t = dPt , Umax
n = max

t∈Tn
{dPt },

and G6t = dQt /η
Q
6 in components (5.1b) through (5.1d). The resulting total cost cal-

culation does not include DG and is based solely on building and market parameter

values.

CostnoDG =
∑
t∈T

δ(pt + zzp)dPt (5.4a)

+
∑
n∈N

pmax
n max

t∈Tn
{dPt } (5.4b)

+
∑
t∈T

δ
(
m6 +

gt + zzg

ηQ6

)
dQt (5.4c)

Cost component (5.4a) calculates the energy and emissions costs associated with the

utility supplying all of the power demand, while component (5.4b) determines the

monthly demand charges for the peak power load. Cost component (5.4c) accounts

for the O&M, fuel, and emissions costs associated with the boiler providing all of

the heating demand. Thus, (5.4a) through (5.4c) calculate the total cost to meet the

building’s demands with the existing system, based solely on parametric, as opposed

to variable, values.

An alternative substitution into (5.1a) through (5.1d) forces DG acquisition. If

SOFCs are acquired (i.e., A4 > 0) and operated in all hours (i.e., P out
4t > 0 and
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Ń4t = 0 ∀t), then the power and heat provided by the existing system are reduced.

In this case, we substitute G4t = P out
4t /η

P
4t in total cost component (5.1a), substitute

Uout
t = max{0, dPt − P out

4t } and −U in
t = min{0, dPt − P out

4t } in component (5.1b),

substitute Umax
n = max

t∈Tn
{max{0, dPt − P out

4t }} in component (5.1c), and substitute

G6t = [dQt −η
Q
4 (P out

4t /η
P
4t)]/η

Q
6 in component (5.1d). The resulting total cost calculation

includes DG and is based not only on building and market parameters, but also on

the selected SOFC design (A4) and dispatch (P out
4t ).

CostDG = c4k
out
4 A4 +

∑
t∈T

δ
(
m4 +

gt + zzg

ηP4t

)
P out
4t (5.5a)

+
∑
t∈T

δ[(pt + zzp)max{0, dPt − P out
4t }+ νtptmin{0, dPt − P out

4t }] (5.5b)

+
∑
n∈N

pmax
n max

t∈Tn
{max{0, dPt − P out

4t }} (5.5c)

+
∑
t∈T

δ
(
m6 +

gt + zzg

ηQ6

)(
dQt −

(ηQ4
ηP4t

)
P out
4t

)
(5.5d)

Cost component (5.5a) determines the capital and operational costs associated with

acquiring A4 SOFCs and operating them at an aggregate power output of P out
4t in each

hour t. Component (5.5b) calculates the cost of power imported from the utility when

the demand exceeds the SOFC power output, and the revenue from power exported to

the utility when the demand is less than the SOFC power output. Component (5.5c)

determines the cost associated with the peak power load imported from the utility

each month, after considering the reduction in peak loads provided by the SOFCs.

Component (5.5d) calculates the operational costs for the boiler, after considering

the thermal energy provided by the SOFCs.

Once we select a specific SOFC system design and dispatch (i.e., fixed values for A4

and P out
4t ), the total cost (CostDG) with DG is calculated based solely on parametric

values. Different instances of acquisition and operation strategy can be examined,

and lead to different parameter substitutions for the design and dispatch variables
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in (5.1a) through (5.1d). Regardless of instance, fixed values must be substituted

for the design (A4) and dispatch (P out
4t ) variables in order to conduct a comparative

static analysis. This static analysis differs from the optimization approach described

in Chapters 2 through 4 given that the system design and dispatch are selected a

priori rather than optimally determined by (P). However, the purpose of the static

analysis is to determine the economic viability of DG for a particular problem instance

prior to expending the time and computational effort associated with solving (P)

to determine the optimal design and dispatch. Based on the static representations

of total cost with (CostDG) and without (CostnoDG) DG, we derive economic and

technological conditions for which the optimal solution to (P) is likely to include

SOFC acquisition and, consequently, for which a building owner is likely to invest in

a SOFC system.

As a minimum criterion, a building owner should not invest in a SOFC system

unless the total cost (including amortized capital and installation costs) to meet the

demands of the building is less with the SOFCs than without them. Thus, the eco-

nomic viability of the SOFCs can be examined by comparing the total cost (CostnoDG)

to meet the building demands with the power utility and boiler alone to the total cost

(CostDG) to meet the building demands with the existing system and the SOFCs. If

the inequality CostDG < CostnoDG is satisfied, then the total cost to meet the build-

ing’s demands is lower with the SOFC system than without it. Based on the definition

of CostnoDG in (5.4a) through (5.4c) and the definition of CostDG in (5.5a) through

(5.5d), an algebraically equivalent inequality to CostDG < CostnoDG is:

c4k
out
4 A4 < SavingsEnergy + SavingsEmissions + SavingsO&M + SavingsPeak (5.6)

where the right-hand side of (5.6) represents the energy, carbon emissions, O&M, and

peak demand savings, respectively, associated with operating the SOFCs. Thus, the

SOFC system is economically viable if the total operational savings (right-hand side
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of the inequality in (5.6)) it provides exceed its capital and installation costs (left-

hand side of the inequality in (5.6)). The representation of CostDG < CostnoDG in

(5.6) is obtained by subtracting all of the terms in CostDG other than c4k
out
4 A4 from

both sides of the inequality, and then appropriately grouping the resulting terms on

the right-hand side of the inequality. In the next section, we examine in more detail

the four types of operational savings that are revealed by our analysis of total cost

function components (5.1a) through (5.1d).

5.2 Savings Analysis

In this section, we discuss the different types of savings that are obtained from

acquiring and operating the SOFC system in Figure 5.1. The total savings afforded

by the SOFCs is then compared to their capital and installation costs to determine

the economic viability of the system.

Energy Savings

The first type of savings from acquiring and operating the SOFC system results from

the reduction of electric and thermal energy that must be provided by the existing

system. The power generated by the SOFCs reduces the electric energy that must

be purchased from the power utility, while the exhaust heat produced by the SOFCs

reduces the thermal energy (in the form of natural gas) that must be purchased from

the gas utility to fuel the boiler.

The energy savings provided by operating the SOFCs at the selected power output

P out
4t , over the time horizon of length |T |, are calculated according to equation (5.7).

SavingsEnergy =

δ
∑
t∈T

[
ptmin{dPt , P out

4t }+ νtptmax{0, P out
4t − dPt } −

( gt
ηP4t

)(
1− ηQ4

ηQ6

)
P out
4t

]
(5.7)

When deriving the terms on the right-hand side of the inequality in (5.6), we obtain

SavingsEnergy by grouping the terms that include the energy market pricing parameters
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pt, νt, and gt. This grouping provides the SOFC savings associated with the reduction

of electricity and natural gas purchased from the utilities. Depending on the market

pricing in a given hour t, the energy savings available from the SOFCs can be positive

or negative. Positive hourly energy savings are achieved if:

ptmin{
( dPt
P out
4t

)
, 1}+ νtptmax{0, 1−

( dPt
P out
4t

)
} >

( gt
ηP4t

)(
1− ηQ4

ηQ6

)
(5.8)

in a given hour t. Condition (5.8) must be satisfied in order for an individual term

t of the summation in (5.7) to be positive. The left-hand side of the inequality in

(5.8) depends on the magnitude of the building’s hourly power demand relative to

the strictly positive power output of the SOFCs.

If the building demand is greater than or equal to the selected SOFC power output

(dPt /P
out
4t ≥ 1) in a given hour, then (5.8) reduces to the condition:

pt >
( gt
ηP4t

)(
1− ηQ4

ηQ6

)
. (5.9)

The left-hand side of the inequality in (5.9) is the hourly price of electricity from the

utility, while the right-hand side is the effective hourly price of electricity from the

SOFCs. The price of electricity from the SOFCs depends on the price of natural gas,

on their electric and thermal efficiencies, and includes a “credit” for the exhaust heat

which reduces the energy (i.e., natural gas) costs of the boiler. Thus, positive energy

savings are obtained in a given hour if the price of electricity from the utility exceeds

the effective price of electricity from the SOFCs. As an alternative explanation,

positive energy savings are achieved if the power utility costs are decreasing (left-hand

side of (5.9)) at a greater rate than the gas utility costs are increasing (right-hand

side of (5.9)).

The condition for positive hourly energy savings changes when excess power is

available from the SOFCs. If the building demand is less than the selected power
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output of the SOFCs (0 ≤ dPt /P
out
4t < 1) in a given hour, then (5.8) reduces to:

[
νt + (1− νt)

( dPt
P out
4t

)]
pt >

( gt
ηP4t

)(
1− ηQ4

ηQ6

)
. (5.10)

In this case, the gas utility costs are increasing at the same rate (right-hand side

(5.10)) as in (5.9). However, the power utility costs now decrease at a rate (left-hand

side (5.10)) that depends on the amount of exported power and the net-metering

rate paid by the utility. As the power export increases (i.e., dPt /P
out
4t → 0), the rate

of decrease in power utility costs approaches the export price νtpt. However, as the

net-metering rate increases (i.e., νt → 1), the rate of decrease in power utility costs

approaches the import price pt. Hence, when power is exported and the export price

is less than the import price (i.e., νt < 1), positive hourly energy savings are more

difficult to obtain since the left-hand side of (5.10) is less than the left-hand side of

(5.9).

Emissions Savings

The second type of savings from acquiring and operating the SOFC system results

from the reduction of taxed carbon dioxide emitted by the existing system. The

SOFCs decrease the electricity that must be purchased from the utility and, conse-

quently, reduce the emissions for which the building owner is taxed. Similarly, the

SOFCs reduce the boiler’s carbon emissions by decreasing the natural gas combusted

by the boiler.

The carbon emissions savings provided by operating the SOFCs at the selected

power output P out
4t , over the time horizon of length |T |, are calculated according to

equation (5.11).

SavingsEmissions = zδ
∑
t∈T

[
zpmin{dPt , P out

4t } −
( zg
ηP4t

)(
1− ηQ4

ηQ6

)
P out
4t

]
(5.11)
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When deriving the terms on the right-hand side of the inequality in (5.6), we obtain

SavingsEmissions by grouping the terms that include the carbon emissions parameters

z, zp, and zg. This grouping provides the SOFC savings associated with the reduction

of taxed carbon emissions from the utility and the boiler. The emissions savings

increase (in absolute value) as the carbon tax rate z increases. However, depending

on the emissions rate of the utility relative to that of natural gas combustion, the

emissions savings could be positive or negative. Positive hourly emissions savings are

achieved if:

zpmin{
( dPt
P out
4t

)
, 1} >

( zg
ηP4t

)(
1− ηQ4

ηQ6

)
(5.12)

in a given hour t. Condition (5.12) must be satisfied in order for an individual term

t of the summation in (5.11) to be positive. Similar to energy savings, the left-hand

side of the inequality in (5.12) depends on the magnitude of the building’s hourly

power demand relative to the strictly positive power output of the SOFCs.

If the building demand is greater than or equal to the selected power output of

the SOFCs (dPt /P
out
4t ≥ 1) in a given hour, then (5.12) reduces to the condition:

zp >
( zg
ηP4t

)(
1− ηQ4

ηQ6

)
. (5.13)

The left-hand side of (5.13) is the carbon emissions rate associated with utility-

generated power, while the right-hand side is the effective carbon emissions rate for

SOFC-generated power. The carbon emissions rate for the SOFCs is based on the

combustion of natural gas and includes a “credit” for the reduction in carbon emis-

sions from the boiler. Thus, positive emissions savings are obtained in a given hour

if the emissions rate of the utility exceeds the effective emissions rate of the SOFCs.

As an alternative explanation, positive emissions savings are achieved if the off-site

emissions costs are decreasing (left-hand side of (5.13)) at a greater rate than the
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on-site emissions costs are increasing (right-hand side of (5.13)).

If excess power is available from the SOFCs, then the condition for positive hourly

emissions savings changes. When the building demand is less than the selected power

output of the SOFCs (0 ≤ dPt /P
out
4t < 1) in a given hour, (5.12) reduces to:

zp
( dPt
P out
4t

)
>
( zg
ηP4t

)(
1− ηQ4

ηQ6

)
. (5.14)

In this case, the on-site emissions costs are increasing at the same rate (right-hand

side (5.14)) as in (5.13). However, the off-site emissions costs now decrease at a rate

(left-hand side (5.14)) that depends on the amount of exported power. As power

export increases (i.e., dPt /P
out
4t → 0), the rate of decrease in off-site emissions costs

approaches zero. Hence, when power is exported, positive hourly emissions savings

are more difficult to obtain since the left-hand side of (5.14) is less than the left-hand

side of (5.13).

Operations and Maintenance Savings

The third type of savings from acquiring and operating the SOFC system results from

reducing the degradation of the existing system. When captured, waste heat from

the SOFCs decreases the thermal energy that must be provided by the boiler and,

consequently, reduces the operation and maintenance of the boiler.

The O&M savings provided by operating the SOFCs at the selected power output

P out
4t , over the time horizon of length |T |, are calculated according to equation (5.15).

SavingsO&M = δ
∑
t∈T

[(ηQ4
ηP4t

)
m6 −m4

]
P out
4t (5.15)

When deriving the terms on the right-hand side of the inequality in (5.6), we ob-

tain SavingsO&M by grouping the terms that include the operations and maintenance

parameters m4 and m6. This grouping provides the SOFC savings associated with

reducing the workload on the boiler. Depending on the O&M costs of the boiler rel-
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ative to that of the SOFCs, the O&M savings could be positive or negative. Positive

hourly O&M savings are achieved if:

m6 >
(ηP4t
ηQ4

)
m4. (5.16)

Condition (5.16) must be satisfied in order for an individual term t of the summation

in (5.15) to be positive. The left-hand side of (5.16) is the O&M cost per unit of

thermal energy output from the boiler. However, the O&M costs for the SOFCs are

charged per unit of electric energy produced. Thus, in order to compare the O&M

costs of the boiler and SOFCs, the right-hand side of (5.16) converts the O&M costs

of the SOFCs to units of thermal energy output. Positive O&M savings are obtained

if the O&M cost per unit of thermal energy output is greater for the boiler than for

the SOFCs.

Peak Demand Savings

The final type of savings from acquiring and operating the SOFC system results from

reducing the burden on the power utility during the building’s peak demand periods.

The power generated by the SOFCs decreases the maximum power load that must

be imported from the utility each month and, therefore, decreases the monthly peak

demand costs.

The peak demand savings provided by operating the SOFC at the selected power

output P out
4t , over the course of |N | months, are calculated according to equation

(5.17).

SavingsPeak = pmax
n

∑
n∈N

[
max
t∈Tn
{dPt } −max

t∈Tn
{max{0, dPt − P out

4t }}
]

(5.17)

When deriving the terms on the right-hand side of the inequality in (5.6), we obtain

SavingsPeak by grouping the terms that include the peak demand charge parameter

pmax
n . This grouping provides the SOFC savings associated with reducing the peak
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power load imported from the utility. The peak demand savings increase as the

monthly peak demand charge pmax
n increases. Unlike energy, emissions, and O&M

savings, the peak demand savings provided by operating the SOFCs are strictly non-

negative. However, positive monthly peak demand savings are only achieved if:

max
t∈Tn
{dPt } > max

t∈Tn
{max{0, dPt − P out

4t }} (5.18)

in a given month n. Condition (5.18) must be satisfied in order for an individual

term n of the summation in (5.17) to be positive. If the SOFCs produce no power in

the peak demand hour t for month n, then the left-hand and right-hand sides of the

inequality in (5.18) are equal and the peak demand savings are zero for that month.

However, because the hourly power output of the SOFCs is strictly positive (P out
4t > 0

∀t), the right-hand side of (5.18) is strictly less than the left-hand side and positive

monthly peak demand savings are achieved.

Total Savings

By summing the four types of savings delineated in equations (5.7), (5.11), (5.15),

and (5.17), we obtain the right-hand side of the inequality in (5.6) and, hence, the

total operational savings provided by the SOFC system. Given that some of the

savings-types can be negative, the total operational savings could be negative for

certain instances. For these instances, the SOFCs are not economically viable, since

condition (5.6) would require the capital and installation costs (c4k
out
4 A4) to be neg-

ative. However, if the total savings provided by operating the acquired SOFCs are

positive and exceed their capital and installation costs over the time horizon of in-

terest, then the SOFCs are economically viable. Stricter conditions involving the

pay-off period of the capital or other economic considerations could be imposed by

the building owner (i.e., the investor). However, the bound on c4k
out
4 A4 determined

by (5.6) represents the maximum capital and installation costs for which the building

owner would obtain any economic benefit from operating the SOFC system.
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5.3 Building, Market, and Technology Scenarios

In order to numerically demonstrate the general conditions for economic viability,

we develop eight distinct scenarios based on varying the building type, energy market,

and technological design and dispatch for the system depicted in Figure 5.1. Using

these scenarios, we examine the total operational savings provided by the SOFC

system and determine which scenarios are likely to result in savings that exceed the

capital and installation cost.

We consider two different building types located in two different energy markets.

The buildings are a large-sized hotel and a medium-sized office building. The energy

markets are southern California and southern Wisconsin. The hourly demand data for

the four building-market combinations is generated in EnergyPlus (see [42]). Building

size and energy demand statistics for each building-market combination are provided

in Table 5.1. The hourly power demands on the peak power day of the year for each

Table 5.1: Size and demand statistics for a large hotel and medium office located in
southern California (CA) and southern Wisconsin (WI).

Statistic LA Hotel WI Hotel LA Office WI Office

Height [floors] 6 6 3 3
Area [thousand ft2] 122 122 54 54
Average power demand [kW] 201 142 54 44
Maximum power [kW] 346 264 151 107
Minimum power [kW] 88 52 15 15
Average heating demand [kW] 191 256 4 7
Maximum heat [kW] 578 1,086 105 110
Minimum heat [kW] 60 50 0 0
Average thermal-to-electric ratio 0.94 1.84 0.11 0.17
Maximum thermal-to-electric 2.04 7.21 4.04 4.74
Minimum thermal-to-electric 0.36 0.49 0.00 0.00

building-market combination are depicted in Figure 5.2, while the hourly heating

demands on the peak heating day of the year are depicted in Figure 5.3. In general,

the power demands for a given building type are higher when the building is located
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Figure 5.2: Building power demands on the peak power day of the year for a large
hotel and medium office located in southern California (CA) and southern Wisconsin
(WI).

in southern California versus southern Wisconsin (see Figure 5.2). This is due to the

fact that the power demand includes cooling, via vapor-compression air conditioning

units, and that the cooling demands are higher in the hotter southern California

climate. Conversely, the heating demands for a given building type are higher when

the building is located in southern Wisconsin (see Figure 5.3), due to the colder

climate.

The electricity and natural gas prices for southern California and southern Wis-

consin are based on 2010 commercial rate schedules from Southern California Edison

(see [43]), Southern California Gas Company (see [44]), Wisconsin Electric Power

Company (see [57]), and Wisconsin Electric-Gas Operations (see [53]), respectively.

Figure 5.4 provides the weekday energy prices for each market. In addition to the

hourly energy prices for electricity, the utilities charge for the peak power demand

each month. Southern California Edison charges $6.39 per kW per month and Wis-
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Figure 5.3: Building heating demands on the peak heating day of the year for a large
hotel and medium office located in southern California (CA) and southern Wisconsin
(WI).

consin Electric Power Company charges $11.35 per kW per month. The availability

of electricity export from the SOFC system to the grid depends on the net-metering

policies and interconnection procedures for the market in which the building is lo-

cated. Based on the 2010 report by the Network for New Energy Choices (see [58]),

California is a favorable market for DG net-metering and interconnect, while Wis-

consin is not. Thus, for the scenarios demonstrated in this chapter, net-metering is

available in southern California, but is not available in southern Wisconsin.

The 2010 reports (see [59] and [60]) by the Energy Information Administration

provide the basis for the calculation of the average carbon emissions rate for cen-

tralized power generation in California and Wisconsin. The primary fuel source for

centralized power generation in California is natural gas. This fuel source, coupled

with the prevalence of renewable power generation, results in a relatively low emissions

rate of 0.27 kg of carbon per kWh of electricity. By contrast, centralized power gener-
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Figure 5.4: Weekday electricity and natural gas prices for commercial service in
southern California (CA) and southern Wisconsin (WI).

ation in Wisconsin produces a relatively high carbon emissions rate of 0.74 kg/kWh,

given that the primary fuel source is coal.

The aforementioned building type and energy market scenarios provide values for

the demand, pricing, and emissions parameters. However, in order to perform a static

analysis, we must also choose a design and dispatch strategy (i.e., fixed values for A4

and P out
4t ) for the SOFCs. The operational cost and performance data for the SOFC

system are derived from Stambouli and Traversa [34], Hawkes et al. [36], and Braun

[5]. For the design scenarios tested here, we assume that SOFCs can only be acquired

in increments of 50 kW (i.e., kout4 = 50) of power capacity and that the SOFC system is

sized as closely as possible to the average power demand of the building. For example,

because the hotel in southern Wisconsin has an average power demand of 142 kW,

we consider a 150 kW SOFC system (i.e., A4 = 3) for acquisition. Additionally,

we include scenarios with and without waste heat capture for the SOFC system in
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order to quantify the value of CHP. If heat capture is not included, then the thermal

efficiency of the SOFC system is zero (i.e., ηQ4 = 0). If heat capture is included, via

heat exchangers, then we assume a thermal efficiency of 21% for the SOFCs and 80%

for the heat exchangers. Thus, the net-thermal efficiency of the SOFC system is 17%

(i.e., ηQ4 = 0.17). The thermal efficiency of the existing boiler is assumed to be 75%

(i.e., ηQ6 = 0.75).

For the dispatch scenarios tested here, we assume that all of the acquired SOFCs

are operated at a positive power output in all hours throughout the time horizon (i.e.,

Ńjt = 0 and P out
4t > 0 ∀t) and are never forced into standby mode. The feasibility

of this simplification is easily confirmed by ensuring the power output of the SOFCs

is never forced below the maximum turn-down (see constraint (2.4d)) in a given

scenario. For the southern California scenarios, we assume the SOFCs baseload at

rated power capacity in all hours (i.e., P out
4t = kout4 A4 ∀t). Given the availability of

net-metering and the relatively high electricity-to-gas price ratio in the California

market, the assumption of baseloading is reasonable. For the southern Wisconsin

scenarios, we assume the SOFCs load-follow in all hours (i.e., P out
4t = min{dPt , kout4 A4}

∀t). The lack of net-metering and the relatively low electricity-to-gas price ratio make

load-following a reasonable assumption in this market.

The carbon emissions rate of the SOFCs is calculated based on their efficiency

and the emissions associated with the combustion of natural gas. According to Natu-

ralGas.org [47], the carbon emissions rate from the combustion of natural gas is 0.18

kg per kWh of gas consumed. When the SOFCs baseload at rated capacity, their

electric efficiency is fixed at the minimum of 41% (i.e., ηP4t = 0.41 ∀t). When the

SOFCs load-follow, their electric efficiency varies between 41% and 57%, depending

on the aggregate power output (see constraint (2.5a)).

Based on varying the building type, energy market, and SOFC system design and

dispatch, we develop the eight scenarios listed in Table 5.2. A variety of alternate

98



Table 5.2: Building, market, and design and dispatch scenarios for which we examine
the economic viability of a DG system.

Scenario Building Market System Design System Dispatch
(Heat capture?) (Net-metering?)

1 Hotel CA 200 kW Baseload
(No) (Yes)

2 Hotel CA 200 kW Baseload
(Yes) (Yes)

3 Office CA 50 kW Baseload
(No) (Yes)

4 Office CA 50 kW Baseload
(Yes) (Yes)

5 Hotel WI 150 kW Load-follow
(No) (No)

6 Hotel WI 150 kW Load-follow
(Yes) (No)

7 Office WI 50 kW Load-follow
(No) (No)

8 Office WI 50 kW Load-follow
(Yes) (No)

scenarios can be developed to test the economic viability of a SOFC system for cer-

tain applications. However, these eight scenarios provide a wide enough range of

applications to generally demonstrate the impact on operational savings of varying

the building, market, and DG system parameters.

5.4 Scenario Analysis

In this section, we provide two types of sensitivity analyses of the operational

savings provided by the SOFC systems in our scenarios. The first type of analysis

examines the sensitivity of the operational savings across scenarios. In other words,

we are interested in how the operational savings in Scenario 1 differ from those of

Scenario 2, Scenario 3, and so on. This sensitivity analysis provides insight regarding

the general types of buildings, markets, and systems for which DG is economically

viable. The second type of analysis examines the sensitivity of the operational savings
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within scenarios. In other words, we are interested in how the operational savings for

a particular scenario change as the values of certain system and market parameters

change. Specifically, we examine the sensitivity of the operational savings to changes

in the rated electric efficiency of the SOFCs and the carbon tax enforced in the

market of interest. This sensitivity analysis provides insight regarding the specific

characteristics of DG systems and energy markets that lead to greater economic

viability. The next two sections present a more detailed discussion of the two types

of sensitivity analyses.

5.4.1 Savings Sensitivity Across Scenarios

In this section, we calculate and compare the annual energy, emissions, O&M, and

peak demand savings provided by the SOFC system in each scenario. Because the

system sizes differ across scenarios, we present the savings per unit of system capacity

(i.e., $ per kW) in order to fairly compare scenarios. The total annual savings in each

scenario are then compared to the annualized capital and installation cost of the

SOFC system to determine its economic viability.

Energy Savings

For Scenarios 1 through 4, because the SOFCs baseload and excess power can be

exported to the grid at the market rate (νt = 1) in all hours t, conditions (5.9) and

(5.10) are equivalent. Thus, for any hour in which the price of electricity from the

utility exceeds the effective price of electricity from the SOFCs, the energy savings are

positive. Because the SOFCs baseload in Scenarios 1 through 4, the electric efficiency

is always the minimum of 41%. The thermal efficiency of the SOFC system is 0% in

Scenarios 1 and 3, since heat capture is not included, and 17% in Scenarios 2 and 4.

Based on the natural gas price of $0.024 per kWh, the electric and thermal efficiencies

of the SOFC system, and the thermal efficiency of the boiler, the maximum effective

price of electricity from the SOFC system is $0.059 per kWh without heat capture

and $0.045 per kWh with heat capture. Since the minimum price of electricity from
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the utility in Scenarios 1 through 4 is $0.081 per kWh, conditions (5.9) and (5.10)

are satisfied and positive energy savings are achieved in all hours.

The energy savings may not positive in all hours in Scenarios 5 through 8. For

these scenarios, the SOFCs load-follow and power is never exported to the grid (i.e.,

dPt /P
out
4t ≥ 1), so only condition (5.9) applies. Because the SOFCs load-follow, the

electric efficiency varies between 41% and 57% depending on the aggregate power

output. Given the natural gas price of $0.031 per kWh, the maximum effective price

of electricity from the SOFC system varies between $0.054-0.074 per kWh without

heat capture and between $0.041-0.058 per kWh with heat capture, depending on the

electric efficiency. The minimum price of electricity from the utility in Scenarios 5

through 8 is $0.056 per kWh. Hence, there could be hours for which condition (5.9)

is not satisfied and the energy savings are negative.

Given the hourly power demands of the buildings over the entire year, the annual

energy savings per kW of SOFC system capacity are presented in Table 5.3 for the

eight scenarios. The savings per unit of power capacity are calculated as the quotient

of the annual energy savings (see (5.7)) and the acquired system capacity (kout4 A4) for

each scenario. Large, positive annual energy savings are achieved in all of the southern

Table 5.3: Annual energy savings per kW of SOFC system capacity provided in each
scenario.

Scenario Annual Energy Savings
($/kW)

1 341.02
2 454.44
3 341.02
4 454.44
5 -39.82
6 69.27
7 -3.28
8 79.24
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California scenarios given the high electricity-to-gas price ratio. On the other hand,

positive annual energy savings are only obtained in the southern Wisconsin scenarios

that include heat capture. Even with heat capture, the energy savings are relatively

small given the low electricity-to-gas price ratio.

Emissions Savings

For Scenarios 1 through 4, because the SOFCs baseload and the power output could be

less than or greater than the building demand, conditions (5.13) or (5.14), respectively,

could apply. Regardless of which condition applies, the hourly emissions savings are

positive when the taxable emissions from the (off-site) utility decrease at a greater

rate than the taxable emissions from the (on-site) SOFCs and boiler increase. Based

on the 0.18 kg per kWh carbon emissions rate associated with the combustion of

natural gas, and the fixed efficiencies of the SOFCs and boiler, the on-site emissions

increase at 0.44 kg per kWh for Scenarios 1 and 3 (without heat capture) and 0.34

kg per kWh for Scenarios 2 and 4 (with heat capture). Since the maximum rate of

decrease in off-site emissions for Scenarios 1 through 4 is 0.27 kg per kWh, conditions

(5.13) and (5.14) are not satisfied and the emissions savings are negative in all hours.

For Scenarios 5 through 8, only condition (5.13) applies, since the SOFCs load-

follow and the power output never exceeds the building demand. As the SOFC power

output changes and the electric efficiency varies between 57% and 41%, the on-site

emissions increase at a rate between 0.32-0.44 kg per kWh for Scenarios 5 and 7

(without heat capture) and a rate between 0.24-0.34 kg per kWh for Scenarios 6 and

8 (with heat capture). Since the off-site (i.e., utility) emissions decrease at a rate of

0.74 kg per kWh for Scenarios 5 through 8, condition (5.13) is satisfied and positive

emissions savings are achieved in all hours.

Given the hourly power demands of the buildings over the entire year, and a $0.02

per kg carbon tax, the annual emissions savings per kW of SOFC system capacity are

presented in Table 5.4 for the eight scenarios. The savings per unit of power capacity
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are calculated as the quotient of the annual emissions savings (see (5.11)) and the

acquired system capacity (kout4 A4) for each scenario. The annual emissions savings

Table 5.4: Annual emissions savings per kW of SOFC system capacity provided in
each scenario.

Scenario Annual Emissions Savings
($/kW)

1 -36.36
2 -18.93
3 -44.86
4 -27.42
5 44.97
6 57.82
7 37.38
8 47.10

are negative in all of the southern California scenarios given the relatively low carbon

emissions rate of the utility in that market. Conversely, positive annual emissions

savings are obtained in all of the southern Wisconsin scenarios given the relatively

high emissions rate in that market.

O&M Savings

Condition (5.16) cannot be satisfied unless heat capture is included to offset a portion

of the thermal energy provided by the boiler. Thus, the hourly O&M savings are

negative for Scenarios 1, 3, 5, and 7, since those scenarios do not include heat capture.

With heat capture, the hourly O&M savings are positive when the O&M costs per

unit of thermal energy produced are higher for the boiler than for the SOFCs. For

all scenarios, we assume that the SOFC O&M costs are $0.02 per kWh of electric

energy produced and that the boiler O&M costs are $0.02 per kWh of thermal energy

produced. Hence, the SOFC O&M costs must be converted to units of thermal energy

produced, based on the electric and thermal efficiencies of the SOFCs.
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For Scenarios 2 and 4, in which the SOFCs baseload, the electric and thermal

efficiencies are fixed. Thus, the SOFC O&M costs are fixed at $0.05 per kWh of

thermal energy produced. For Scenarios 6 and 8, in which the SOFCs load-follow,

the electric efficiency varies based on the power output. Accordingly, the SOFC O&M

costs vary between $0.05-0.07 per kWh of thermal energy produced. Since the boiler

O&M costs are $0.02 per kWh for all scenarios, condition (5.16) is not satisfied and

the O&M savings are negative in all hours.

Given the hourly power demands of the buildings over the entire year, the annual

O&M savings per kW of SOFC system capacity are presented in Table 5.5 for the

eight scenarios. The savings per unit of power capacity are calculated as the quotient

of the annual O&M savings (see (5.15)) and the acquired system capacity (kout4 A4) for

each scenario. The annual O&M savings are negative for all scenarios. The savings

Table 5.5: Annual O&M savings per kW of SOFC system capacity provided in each
scenario.

Scenario Annual O&M Savings
($/kW)

1 -175.20
2 -102.56
3 -175.20
4 -102.56
5 -137.39
6 -83.84
7 -108.46
8 -67.96

are greater (i.e., less negative) for the scenarios that include heat capture; however,

the thermal efficiency of the SOFCs must increase significantly in order to achieve

positive O&M savings.

Peak Demand Savings

Because the SOFCs produce power in all hours, whether baseloading or load-following,
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condition (5.18) is satisfied and positive peak demand savings are achieved in all

scenarios. Additionally, because the SOFC system is sized based on the buildings’

average power load, which is less than the peak power load, the SOFCs operate at

rated capacity during peak demand hours in all scenarios. As a result, the monthly

peak demand savings are calculated as the product of the peak demand charge and

the acquired system capacity.

Given the monthly peak power demands of the buildings over the entire year, the

annual peak demand savings per kW of SOFC system capacity are presented in Ta-

ble 5.6 for the eight scenarios. The savings per unit of power capacity are calculated as

the quotient of the annual peak demand savings (see (5.17)) and the acquired system

capacity (kout4 A4) for each scenario. The annual peak demand savings are positive

Table 5.6: Annual peak demand savings per kW of SOFC system capacity provided
in each scenario.

Scenario Annual Peak Demand Savings
($/kW)

1 76.68
2 76.68
3 76.68
4 76.68
5 136.25
6 136.25
7 136.24
8 136.24

in all scenarios. However, the savings are larger in the southern Wisconsin market

where the peak demand charges are nearly double those of the southern California

market.

Total Savings

Based on summing the four types of annual savings listed in the previous tables, the

total annual savings per kW of SOFC system capacity are presented in Table 5.7 for
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the eight scenarios. The total annual savings are positive in all scenarios. However,

Table 5.7: Total annual savings per kW of SOFC system capacity provided in each
scenario.

Scenario Total Annual Savings
($/kW)

1 206.14
2 409.63
3 197.64
4 401.14
5 4.01
6 179.50
7 61.88
8 194.62

there is a 10,000% increase in operational savings from the worst-case to best-case

scenario! Thus, the combination of building type, energy market, and system design

and dispatch in a given scenario clearly has a significant impact on the economic

viability of the SOFC system.

The worst-case scenario presented in this chapter is the hotel, located in southern

Wisconsin, without heat capture for the SOFCs (Scenario 5). Figure 5.5 depicts

the total annual savings for Scenario 5 based on the accumulation of annual energy,

emissions, O&M, and peak demand savings. For this scenario, the negative energy

savings are barely offset by the positive emissions savings, and the negative O&M

savings are nearly offset by the positive peak demand savings. Summing the four

savings-types results in a total operational savings near zero ($4.01 per kW). With

nearly no operational savings, the SOFC system is not economically viable. In order

to increase the viability of the system, we might consider a more favorable energy

market for the hotel.

By locating the hotel, with the power-only SOFC system, in the southern Califor-

nia market (Scenario 1), we increase the operational savings by 5,000%. Figure 5.6
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Figure 5.5: Total annual savings for Scenario 5.

demonstrates that Scenario 1 results in total operational savings of $206.14 per kW.

Although the emissions savings in the southern California market are negative, they

are more than offset by the large, positive energy savings. In fact, when comparing

Scenarios 1 and 5, the emissions, O&M, and peak demand savings are all less in

Scenario 1. However, the energy savings are large enough to result in greater total

savings in Scenario 1. In order to increase the economic viability of the system even

further, we might consider upgrading the SOFCs with heat capture.

Adding heat capture to the SOFC system for the hotel in southern California

(Scenario 2) increases the operational savings a further 100%. Figure 5.7 depicts the

energy, emissions, O&M, and peak demand savings for Scenario 2, which result in total

operational savings of $409.63 per kW. By adding heat capture to the SOFC system

in Scenario 2, the energy savings increase by over 30%, the emissions savings increase

by nearly 50%, and the O&M savings increase by over 40% compared to Scenario
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Figure 5.6: Total annual savings for Scenario 1.

1. Of the eight scenarios tested here, Scenario 2 provides the greatest operational

savings and, consequently, represents the scenario for which the SOFC system is

most economically viable.

Scenario 2 of our analysis results in total annual operational savings of $81,926,

which represents the right-hand side of condition (5.6). By dividing both sides of

the inequality in (5.6) by the system capacity (kout4 A4 = 200), we obtain the eco-

nomic viability condition c4 < 409.63. The parameter c4 is the annualized capital

and installation cost ($ per kW) of the SOFC CHP system, while 409.64 is the an-

nual operational savings ($ per kW) provided by that system. Thus, the annualized

capital and installation cost for the SOFC system must be less than $409.63 per kW

in order for the system operation to provide any economic benefit. Various meth-

ods of amortization, interest rates, and system lifetimes can be employed to obtain

the annualized capital and installation cost. As one example, an initial capital and
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Figure 5.7: Total annual savings for Scenario 2.

installation cost of $2,900 per kW compounded continuously at 5% interest over a

15-year system lifetime results in an annualized cost of $409.29 per kW. At this cost,

the SOFC CHP system barely achieves economic viability. Lower initial investment

costs, a lower interest rate, or a longer system lifetime are required to produce greater

viability. Regardless of the method and parameters used to annualize the capital and

installation cost, the resulting value must be less than the annual operational savings

for the SOFCs to be economically viable.

5.4.2 Savings Sensitivity Within Scenarios

The previous subsection examined the sensitivity of the annual operational savings

across the scenarios presented in Table 5.2. This analysis allows us to identify building

types, locations, and system configurations for which DG might achieve economic

viability. However, within each of these scenarios, the building, market, and system

parameters are fixed. By contrast, the analysis presented in this subsection examines
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the sensitivity of the annual operational savings to changes in the parameters within a

scenario. Specifically, we investigate the impact on the operational savings of varying

the SOFCs’ rated electric efficiency and the market’s carbon tax. We perform this

sensitivity analysis for each of the hotel scenarios (i.e., 1, 2, 5, and 6) in order to

demonstrate the results over a range from the worst to best-case scenario.

Electric Efficiency

For the analysis presented in Section 5.4.1, the rated electric efficiency (i.e., the

efficiency at maximum power output) of the SOFCs is fixed at 41%. Also, the part-

load electric efficiency (i.e., the efficiency below maximum power output) increases to

a maximum of 57% as the SOFC power output decreases to the maximum turn-down.

In this section, we vary the rated electric efficiency of the SOFCs between 40% and

60% to determine the associated impact on the operational savings. Regardless of the

rated electric efficiency, we assume the part-load electric efficiency increases linearly

to a maximum that is 16% greater than the rated electric efficiency. For example, if

the rated electric efficiency is 60%, then the electric efficiency at the maximum turn-

down is 76%. The rated thermal efficiency remains fixed at 17% for those scenarios

that include heat capture.

The electric efficiency of the SOFCs contributes to the annual energy, emissions,

and O&M savings, according to equations (5.7), (5.11), and (5.15), respectively. Fig-

ure 5.8 demonstrates the impact on the annual energy savings of increasing the rated

electric efficiency from 40% to 60%. The annual energy savings increase as the rated

electric efficiency increases. Regardless of the electric efficiency and whether heat

capture is included, the southern California scenarios (1 and 2) provide greater en-

ergy savings than the southern Wisconsin scenarios (5 and 6). This is due primarily

to the high price of utility-purchased electricity in southern California and the favor-

able net-metering policies that encourage the SOFCs to baseload. The relatively low

price of electricity and unfavorable net-metering policies in southern Wisconsin lead
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Figure 5.8: Sensitivity of the annual energy savings to changes in the rated electric
efficiency of the SOFC.

to lower energy savings. In fact, for the southern Wisconsin scenario (5) without heat

capture, the annual energy savings are not positive unless the rated electric efficiency

increases beyond 45%.

Increasing the rated electric efficiency also increases the annual emissions savings,

as depicted in Figure 5.9. In contrast to the energy savings, the southern Wisconsin

scenarios provide greater emissions savings than the southern California scenarios,

regardless of the electric efficiency. The average rate of centralized carbon emissions

in the southern California market is so low that positive annual emissions savings are

only achievable at a rated electric efficiency greater than 60%. On the other hand, the

centralized carbon emissions in the southern Wisconsin market are high enough that

positive emissions savings are achievable across the entire range of electric efficiencies

tested. For both energy markets, however, the scenarios (2 and 6) that include heat
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Figure 5.9: Sensitivity of the annual emissions savings to changes in the rated electric
efficiency of the SOFC.

capture provide greater savings than those that do not include heat capture due to

the decrease in emissions from the boiler.

The final type of savings that is affected by changes in the rated electric effi-

ciency of the SOFCs is O&M. According to Figure 5.10, the O&M savings decrease,

or remain the same, as the rated electric efficiency increases. Furthermore, due to

the relatively low O&M costs for the boiler, the annual O&M savings are negative

regardless of the electric efficiency of the SOFCs. For scenarios (1 and 5) that do not

include heat capture, positive O&M savings can never be achieved because there is no

reduction in the thermal energy provided by the boiler. However, for scenarios (2 and

6) that include heat capture, the O&M savings decrease as the rated electric efficiency

increases. This is due to the fact that increasing the electric efficiency of the SOFCs

decreases the amount of natural gas required as input and, therefore, decreases the
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Figure 5.10: Sensitivity of the annual O&M savings to changes in the rated electric
efficiency of the SOFC.

amount of exhaust gas output. With less exhaust gas available to offset the thermal

energy provided by the boiler, the O&M savings decrease.

Increasing the rated electric efficiency of the SOFCs increases the annual energy

and emissions savings, but decreases (or does not impact) the annual O&M savings.

The net-effect of these changes in annual energy, emissions, and O&M savings is

that the total annual savings increase with the rated electric efficiency. According

to condition (5.6), SOFCs become economically viable when the total annual savings

they provide exceed their annualized capital and installation cost. Thus, as the total

annual savings increase, the economic viability of the SOFCs increases. Given the

total annual savings for a specific scenario, we refer to the annualized capital and

installation cost that precisely equals the annual savings as the annualized “break-

even” cost. At capital and installation costs below the break-even cost, positive
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net-savings are achievable and the SOFCs are economically viable.

Based on the annualized break-even cost, we calculate an initial (i.e., upfront)

break-even cost for the SOFCs by reversing the amortization process (i.e., continuous

compounding at 5% interest over the 15-year lifetime). Figure 5.11 demonstrates

the effect on the initial break-even cost of increasing the rated electric efficiency

of the SOFCs. In terms of economic viability, the southern California scenarios (1

Figure 5.11: Sensitivity of the break-even capital and installation cost to changes in
the rated electric efficiency of the SOFC. The break-even cost is the SOFC capital
and installation cost that equates exactly to the operational savings provided by the
SOFC.

and 2) dominate the southern Wisconsin scenarios (5 and 6) across the range of

electric efficiencies. At the lowest rated electric efficiency (i.e., 40%) for the southern

Wisconsin scenario (5) without heat capture, the SOFCs are not economically viable

because the break-even cost is negative. At the highest rated electric efficiency (i.e.,

60%) for the southern Wisconsin scenario (6) with heat capture, the SOFCs are only
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economically viable for initial capital and installation costs at or below $2,000 per

kW. By contrast, the southern California scenario (2) with heat capture demonstrates

economic viability for the SOFCs at costs approaching $4,000 per kW, when the rated

electric efficiency is 60%.

Carbon Tax

In addition to the rated electric efficiency of the SOFCs, the carbon tax rate in the

market of interest also affects the economic viability of the SOFC system. For all of

the analysis presented up to this point, the carbon tax rate is assumed to be $0.02 per

kg (roughly $20 per metric ton). For the analysis presented next, we vary the carbon

tax rate between $0.02 per kg and $0.10 per kg (roughly $100 per metric ton). In

order to isolate the impact of changes in the carbon tax, we return the rated electric

efficiency of the SOFCs to the fixed 41%.

Unlike the electric efficiency, the carbon tax rate contributes only to the annual

emissions savings, according to equation (5.11). Figure 5.12 demonstrates the impact

on the annual emissions savings of varying the carbon tax rate between $0.02-0.10

per kg. As the carbon tax increases, the annual emissions savings in the southern

Wisconsin scenarios (5 and 6) increase. On the other hand, the annual emissions

savings in the southern California scenarios (1 and 2) decrease as the carbon tax

increases. As previously demonstrated in Figure 5.9, the emissions savings are positive

in Scenarios 5 and 6, and negative in Scenarios 1 and 2. Thus, increasing the carbon

tax causes the annual emissions savings to be more positive in Scenarios 5 and 6, and

more negative in Scenarios 1 and 2. The increase or decrease in the annual emissions

savings has implications for the total annual savings.

For the southern Wisconsin scenarios, the total annual savings increase as the

carbon tax rate increases. By contrast, the total annual savings decrease as the

carbon tax rate increases for the southern California scenarios. Applying the same

approach as with the electric efficiency sensitivity analysis, we calculate the initial

115



Figure 5.12: Sensitivity of the annual emissions savings to changes in the carbon tax
rate.

break-even capital and installation cost for the SOFCs based on the total annual

savings. Figure 5.13 depicts the initial break-even cost for the SOFCs as the carbon

tax rate varies between $0.02-0.10 per kg. At a carbon tax rate of $0.02 per kg, the

southern California scenarios dominate the southern Wisconsin scenarios in terms

of economic viability. In the best-case scenario (2) at this tax rate, the SOFCs are

economically viable at initial capital and installation costs approaching $3,000 per

kW. In the worst-case scenario (5) at this tax rate, the SOFCs are not viable at any

positive cost. However, as the carbon tax increases, the SOFCs become more viable

in southern Wisconsin and less viable in southern California. In fact, at carbon tax

rates greater than $0.07 and $0.08 per kg for scenarios without (1 and 5) and with

(2 and 6) heat capture, respectively, the SOFCs achieve greater economic viability

in southern Wisconsin than in southern California. For a carbon tax rate of $0.10
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Figure 5.13: Sensitivity of the break-even capital and installation cost to changes in
the carbon tax rate. The break-even cost is the SOFC capital and installation cost
that equates exactly to the operational savings provided by the SOFC.

per kg, the best-case scenario (6) achieves approximately the same break-even cost

(nearly $3,000 per kW) as the best-case scenario (2) for a carbon tax rate of $0.02

per kg. However, at the higher tax rate, the best-case scenario is located in southern

Wisconsin, rather than in southern California.

The cost versus savings analysis presented in this chapter provides screening cri-

teria for the instances of (P) we wish to solve. For a given scenario (i.e., a problem

instance), if the savings provided by acquiring and operating a DG technology exceed

its capital and installation cost, according to (5.6), then the technology is economi-

cally viable. If the technology is economically viable, then the optimal system design

and dispatch determined by solving the instance of (P) is likely to include that tech-

nology. However, the (P)-solution could identify a more favorable (i.e., lower-cost)
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capacity and operational strategy for the technology than that used to initially assess

its economic viability. This is particularly true when the assessed technology can be

integrated with other technologies (e.g., electric and thermal storage) in the more ro-

bust system (see Figure 2.1) modeled by (P). For this reason, our economic viability

analysis is a useful complement to, but not a replacement for, (P).

In addition to providing screening criteria for instances of (P), the cost versus

savings analysis presented in this chapter reveals building, market, and technology

characteristics for which DG might achieve greater market penetration. The cost

analysis, which culminates with (5.6), demonstrates that lower capital and installation

costs are likely to encourage greater investment in DG technologies. However, the

savings analyses also identify a number of favorable circumstances for DG.

The energy savings analysis indicates that a market with high electricity costs

relative to the cost of natural gas, and with net-metering at full market price, is more

likely to result in positive operational savings from DG, according to (5.9) and (5.10).

The emissions savings analysis demonstrates that a market with a higher rate of car-

bon emissions, relative to that resulting from the combustion of natural gas, is also

more likely to result in positive operational savings, according to (5.13) and (5.14).

However, for many markets, it is difficult to achieve both positive energy savings and

positive emissions savings. The data provided in Appendix B demonstrate that mar-

kets with the highest electricity prices often have the lowest carbon emissions rates.

We demonstrate such a market with the southern California scenarios. Conversely,

markets with low electricity prices often have high emissions rates. The southern

Wisconsin scenarios exemplify a market such as this. In general, this phenomenon

is due to the higher cost of low-emitting fuel sources, like gas and nuclear, and the

lower cost of high-emitting fuel sources, like coal. Thus, the analysis provided in

this chapter can help identify markets that balance the trade-off between energy and

emissions savings in order to obtain positive total savings.
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The energy and emissions savings analyses also show the benefits of DG technolo-

gies which have higher electric and thermal efficiencies, particularly relative to the

technologies they are replacing. The O&M savings analysis similarly indicates that

DG is more attractive when the operations and maintenance costs of the new tech-

nology are low relative to the technology being replaced, according to (5.16). This

information can be used to identify benchmarks for the performance capabilities of

new technologies, as well as to select older technologies for upgrade.

Finally, the peak demand savings analysis reveals that buildings with large peak

loads are likely to benefit from DG technologies that can operate during peak demand

time periods, according to (5.18). Commonly referred to as “peak shaving,” the

operation of DG technologies during peak demand time periods has the potential to

provide significant savings, particularly in markets with relatively high peak demand

charges. Combining all of the insight provided by the cost versus savings analysis,

one can discover building-market-technology combinations that are likely to encourage

DG investment.
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CHAPTER 6

CONCLUSIONS

In this chapter, we review the major findings of our research, and provide recom-

mendations for future work on the design and dispatch problem.

6.1 Major Findings

In Chapter 1, we thoroughly review the existing solution approaches to the design

and dispatch problem, and the research applications which apply those approaches.

The major findings are as follows:

• The primary solution approaches to the design and dispatch problem are simu-

lation, evolutionary algorithms (e.g., genetic algorithms), and traditional math-

ematical programming algorithms (e.g., branch-and-bound).

• Traditional mathematical programming algorithms can guarantee global op-

timality of design and dispatch solutions, while simulation and evolutionary

algorithms cannot.

• A prominent model (i.e., DER-CAM) which applies traditional mathematical

programming algorithms can easily solve large instances of the design and dis-

patch problem to global optimality, but simplifies or ignores many dynamic

performance characteristics of DG technologies.

In Chapter 2, we develop a mixed-integer, nonlinear programming (MINLP)

formulation, (P), of the design and dispatch problem which includes dynamic perfor-

mance characteristics of the DG technologies. The major findings are as follows:

• The minimum turn-down, start-up fuel consumption, power ramping, and part-

load electric efficiency of power generation technologies can be modeled in the
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context of a mathematical program, but require numerous general integer vari-

ables, nonseparable constraints, and nonlinear equality constraints.

• The time-varying temperature of thermal storage technologies can be modeled in

the context of a mathematical program, but requires numerous binary variables

and nonseparable, nonlinear equality constraints.

In Chapter 3, we develop specialized convex underestimation, (U), and heuristic

linearization, (H), techniques to bound and solve instances of (P). The major findings

are as follows:

• Global lower bounds on instances of (P) can be obtained by formulating convex

underestimators for the bilinear and trilinear terms in the nonlinear equality

constraints, and solving the resulting MILP, (U).

• Global upper bounds on instances of (P) can be obtained by fixing the values

of the electric efficiency and storage temperature variables, and solving the

resulting MILP, (H).

• A prominent MINLP solver (i.e., MINOTAUR) is capable of solving (P)-instances

with a time horizon of up to four days, while our bounding techniques can solve

(P)-instances of up to one year.

In Chapter 4, we evaluate the qualitative and quantitative impacts of ignor-

ing dynamic performance characteristics by contrasting (P) with a simpler, linear

formulation (S). The major findings are as follows:

• The consideration of dynamic performance characteristics is most important

for scenarios in which it is beneficial, or required, to dispatch the system in a

load-following (i.e., time-varying) manner.

• A representative MILP formulation, (S), of the design and dispatch problem

includes fewer variables and constraints than (P), but models the natural gas
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consumption of power generation technologies and the inventory of energy in

thermal storage technologies in a fundamentally different manner than (P).

• A case study comparing (P) and (S) reveals that the simpler formulation over-

estimates the annual operational costs of the power generation technologies and,

as a result, underestimates the optimal acquired power capacity by 15%.

In Chapter 5, we determine parametric conditions for the economic viability of

a DG technology that can be utilized as screening criteria for the scenarios that are

solved by (P). The major findings are as follows:

• A comparative static analysis of the economic viability of a DG technology

can be performed using the total cost objective function of (P); however, the

variables in the total cost function must be replaced with fixed parameters by

choosing a specific design and dispatch strategy to evaluate.

• The analysis reveals that a DG technology is economically viable when the

operational savings, consisting of energy, emissions, O&M, and peak demand

savings, exceed the capital and installation cost.

• Sensitivity analyses across and within a variety of scenarios reveal that the

problem instances most likely to result in DG acquisition when solved in (P) are

those that include buildings retrofitted with high-CHP-efficiency technologies

and located in markets with either a high electricity-to-gas price ratio or with

a high rate of carbon emissions coupled with a high carbon tax rate.

6.2 Future Work

One might pursue a number of extensions to (P) in future research. For instance,

the model might include additional types of building energy demand. In the work

presented here, we aggregate the building’s space and water heating demands, and
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include the cooling demand as part of the power demand. An alternative formulation

could treat all of the energy demands of the building separately.

The separation of the building’s energy demands affords the opportunity to con-

sider different technologies as part of the DG system. For example, one might inte-

grate absorption chillers with the CHP generators in order to supply a portion of the

building’s cooling demand. The chillers might then be combined with cold thermal

storage, in the form of chilled water, ice, or ice-slurry. The model could also include

alternative renewable sources of generation. Wind turbines and solar thermal collec-

tors would provide additional means to offset the power and heating burdens of the

existing system.

Other interesting modifications to (P) might explore how the generators are cur-

rently modeled. We treat the electric efficiency of a fuel cell as a decreasing, linear

function of its power output. However, one might test other functional forms for

alternative technologies. Additionally, in the case of multiple fuel cells, the current

formulation aggregates their power output such that each fuel cell supplies an equal

share of the total power output. Future work could modify the (P) formulation, with

additional integer variables, to allow each fuel cell to operate at a power output, and

therefore efficiency, that is independent of the other fuel cells. This greater flexibility

in operational strategy could increase the economic viability of the technology.

Finally, future research could include uncertainty in the building demand, system

availability, and utility pricing. We treat each of these parameters as deterministic in

(P). A stochastic programming version of (P) could test various parametric scenarios

to examine the sensitivity of the optimal system design and dispatch to changes

in demand, availability, and pricing. Because the uncertainty in building demand

and system availability primarily exists from minute-to-minute, accurately capturing

the stochasticity of these parameters could require a greater time fidelity than one

hour. Similarly, because the uncertainty in utility pricing exists from year-to-year,
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a stochastic model might require a time horizon longer than one year. Greater time

fidelity and a longer time horizon increase the size of (P)-instances and, consequently,

make them more difficult to solve. However, the more difficult stochastic model would

provide additional real-world insight that could impact the market penetration of DG.
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APPENDIX A - AMPL CODE

This section includes the model, data, run, and out files for a representative one-

day instance of (P) that is solved using (U) and (H). In order to solve instances

of multiple months, all of the parameters, variables, objective function components,

and constraints that involve the set N must be used in place of what is shown here.

Instructions for doing this are provided in comments prior to the appropriate lines of

code.

A.1 Model File

#-------------------------------------------------------------------

# Sets, Parameters, and Variables

#-------------------------------------------------------------------

##For one-year instance, remove next three comments and add comment

##in front of fourth set.

#set N; #set of all months

#set Tn{N}; #set of all hours in month n

#set T = union {n in N} Tn[n]; #set of all hours

set T; #set of all hours

param tau; #time increment per period in hours

param de{t in T}; #electricity demand in period t

param dh{t in T}; #heat demand in period t

param gpx; #max power capacity of power-only fcells

param hpx; #max power capacity of CHP fcells

param vpx; #max power capacity of PV cells
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param pvf{t in T}; #forecasted percent max solar, period t

param gmt; #min turn-down power-only fcells

param hmt; #min turn-down CHP fcells

param gru; #max ramp-up rate for power-only fcell

param grd; #max ramp-down for power-only fcell

param hru; #max ramp-up rate for CHP fcell

param hrd; #max ramp-down for CHP fcell

param gaq; #$/kW of power-only fuel cell

param haq; #$/kW of CHP fuel cell

param vaq; #$/kW of PV cell

param gom; #variable o&m cost power fcell

param hom; #variable o&m CHP fcell

param vom; #variable o&m pv cell

param bom; #variable o&m boiler

param waq; #$/gal of tank

param wx; #initial capacity of tank

param wxx; #max tank capacity

param wd; #decay rate of water temp

param we; #heat x efficiency

param wu; #max water temp

param wh; #hot water delivery temp

param wr; #average return water temp

param wl; #water main temp

param ws; #specific heat of water

param sx; #max storage capacity of battery

param msc; #min state-of-charge of battery

param scr; #max charge rate for battery
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param sdr; #max discharge rate for battery

param sce; #charge efficiency for battery

param sde; #discharge efficiency for battery

param saq; #$/kWh of battery

param ce{t in T}; #price of elec. from grid, hour t

param cg{t in T}; #energy charge for natural gas, hour t

param fe; #elec eff during start-up

param fh; #CHP exhaust output per unit natural gas input

param ft; #average temp of CHP exhaust

param fs; #specific heat of exhaust

param fb; #heat efficiency for boiler

param zt; #carbon tax

param zu; #carbon emission rate from grid

param zg; #carbon emission rate of natural gas

##For one-year instance, remove next comment and add comment

##in front of second param.

#param cd{n in N}; #peak demand charge for electricity, month n

param cd; #peak demand charge for electricity, month n

#-------Underestimator set, bound parameters, vars----------#

set U; #set of all underestimator vars

param GNhi{t in T}; #upper bound for GN

param GNlo{t in T}; #lower bound for GN

param HNhi{t in T}; #upper bound for HN
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param HNlo{t in T}; #lower bound for HN

param GGhi{t in T}; #upper bound for GNG

param GGlo{t in T}; #lower bound for GNG

param HGhi{t in T}; #upper bound for HNG

param HGlo{t in T}; #lower bound for HNG

param GEhi{t in T}; #upper bound for GE

param GElo{t in T}; #lower bound for GE

param HEhi{t in T}; #upper bound for HE

param HElo{t in T}; #lower bound for HE

param WChi{t in T}; #upper bound for WC

param WClo{t in T}; #lower bound for WC

param WDhi{t in T}; #upper bound for WD

param WDlo{t in T}; #lower bound for WD

param Whi{t in T}; #upper bound for W

param Wlo{t in T}; #lower bound for W

param WXhi{t in T}; #upper bound for WX

param WXlo{t in T}; #lower bound for WX

param WYhi{t in T}; #upper bound for WY

param WYlo{t in T}; #lower bound for WY

param WAhi; #upper bound on WA

param WAlo; #lower bound on WA

#initial values for var bounds

param iGNhi{t in T}; #upper bound for GN

param iGNlo{t in T}; #lower bound for GN

param iHNhi{t in T}; #upper bound for HN

param iHNlo{t in T}; #lower bound for HN
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param iGGhi{t in T}; #upper bound for GNG

param iGGlo{t in T}; #lower bound for GNG

param iHGhi{t in T}; #upper bound for HNG

param iHGlo{t in T}; #lower bound for HNG

param iGEhi{t in T}; #upper bound for GE

param iGElo{t in T}; #lower bound for GE

param iHEhi{t in T}; #upper bound for HE

param iHElo{t in T}; #lower bound for HE

param iWChi{t in T}; #upper bound for WC

param iWClo{t in T}; #lower bound for WC

param iWDhi{t in T}; #upper bound for WD

param iWDlo{t in T}; #lower bound for WD

param jWDlo{t in T}; #tight lower bound for WD

param iWhi{t in T}; #upper bound for W

param jWhi{t in T}; #tight upper bound for W

param iWlo{t in T}; #lower bound for W

param iWXhi{t in T}; #upper bound for WX

param iWXlo{t in T}; #lower bound for WX

param iWYhi{t in T}; #upper bound for WY

param jWYhi{t in T}; #tight upper bound for WY

param iWYlo{t in T}; #lower bound for WY

param iWAhi; #upper bound on WA

param iWAlo; #lower bound on WA

var UE{u in U,t in T}; #new variables to replace NL terms

#trilinear then bilinear

#----------------------------------------------------#
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var GA >=0, integer, :=0; #num power-only fuel cells acquired

var HA >=0, integer,:=0; #num CHP fuel cells acquired

var VA >=0, integer,:=0; #num PV cells acquired

var SA >=0, integer,:=0; #num of batteries acquired

var WA >=WAlo, <=WAhi, :=wx; #gallons for tank

var WB binary, :=0; #1 if water tank acquired

var GE{t in T} >=GElo[t], <=GEhi[t], :=fe; #elec eff of power only SOFC

var HE{t in T} >=HElo[t], <=HEhi[t], :=fe; #elec eff of CHP SOFC

var GNG{t in T} >=GGlo[t], <=GGhi[t], :=0; #gas for power SOFCs

var HNG{t in T} >=HGlo[t], <=HGhi[t], :=0; #gas for CHP SOFCs

var BNG{t in T} >=0, :=dh[t]/fb; #gas for boiler

var GN{t in T} integer,>=GNlo[t], <=GNhi[t], :=0;

#num power-only fcells turned on period t

var HN{t in T} integer,>=HNlo[t], <= HNhi[t], :=0;

#num CHP fcells turned on period t

var GY{t in T:t>1} >=0, :=0; #num power fcells turned on t to t-1

var HY{t in T:t>1} >=0, :=0; #num CHP fcells turned on t to t-1

var WY{t in T} binary,>=WYlo[t],<=WYhi[t], :=0;

#1 if water temp is above delivery temp in t

var WX{t in T} binary,>=WXlo[t],<=WXhi[t], :=0;

#1 if water temp is above return temp in t

var P{t in T} >=0, :=0; #power from power-only fuel cells in t

var CP{t in T} >=0, :=0; #power from CHP fuel cells in t

var V{t in T} >=0, :=0; #power from PV cells in t

var W{t in T} >=Wlo[t], <=Whi[t], :=wr; #temp of water tank in t

var WC{t in T} >=WClo[t], <=WChi[t], :=0;
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#flowrate of CHP exhaust into tank in t

var WD{t in T} >=WDlo[t], <=WDhi[t], :=dh[t]/(ws*(wh-wr));

#flow rate of heated water in t

var SC{t in T} >=0, :=0; #state-of-charge of batteries in t

var CR{t in T} >=0, :=0; #charge rate in t

var DR{t in T} >=0, :=0; #depletion rate in t

var EP{t in T} >=0, :=de[t]; #power supplied by grid in period t

var ES{t in T} >=0, :=0; #power sold back to grid in t

##For one-year instance, remove next comment and add comment

##in front of second var.

#var E{n in N} >= 0, :=max{t in Tn[n]}de[t];

var E >= 0, :=max{t in T}de[t]; #max supplied by grid in month n

#------------------------------------------------------------------

# Objective Function (min costs from capital, O&M, fuel, and grid)

#------------------------------------------------------------------

minimize under_cost:

gaq*gpx*GA + haq*hpx*HA + vaq*vpx*VA + saq*sx*SA + waq*(WA-wx) +

tau*sum{t in T}(gom*P[t] + hom*CP[t] + vom*V[t]) +

sum{t in T:t>1}((cg[t]+zt*zg)*(((gmt*gpx)/fe)*GY[t]+

((hmt*hpx)/fe)*HY[t]))+

tau*sum{t in T}((bom*fb+cg[t]+zt*zg)*BNG[t]) +

tau*sum{t in T}((cg[t]+zt*zg)*(GNG[t]+HNG[t])) +

tau*sum{t in T}((ce[t]+zt*zu)*EP[t])- tau*sum{t in T}(ce[t]*ES[t])+
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##For one-year instance, remove next comment and add comment

##in front of second line.

#sum{n in N}(cd[n]*E[n]);

0.03*cd*E;

#------------------------------------------------------------------

# Constraints

#------------------------------------------------------------------

#power and heat demand constraints (2.2a) and (2.2b)

subject to demande{t in T}:

P[t] + CP[t] + V[t] + (sde*DR[t]-CR[t]) + (EP[t]-ES[t]) = de[t];

subject to demandh{t in T}:

-WD[t]*(ws*(wh-wr))*wl + (ws*(wh-wr))*UE[6,t] =

dh[t]*(W[t]-wl-UE[7,t]+wh*WY[t]);

#max monthly grid demand constraint (2.3a)

##For one-year instance, remove next comment and add comment

##in front of second constraint.

#subject to minmax{n in N,t in Tn[n]}: E[n] >= EP[t];

subject to minmax{t in T}: E >= EP[t];

#monthly net generator constraint (2.3b)

##For one-year instance, remove next comment and add comment

##in front of second constraint.

#subject to netgen{n in N}:

sum{t in Tn[n]}ES[t] <= sum{t in Tn[n]}EP[t];
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subject to netgen: sum{t in T}ES[t] <= sum{t in T}EP[t];

#max power from PV cells constraint (2.4c)

subject to maxpowv{t in T}: V[t] <= pvf[t]*vpx*VA;

#max/min power from fuel cells constraints (2.4d) and (2.4e)

subject to pow_lo{t in T}: P[t] >= gmt*gpx*GN[t];

subject to pow_hi{t in T}: P[t] <= gpx*GN[t];

subject to pow_buyon{t in T}: GA >= GN[t];

subject to chp_lo{t in T}: CP[t] >= hmt*hpx*HN[t];

subject to chp_hi{t in T}: CP[t] <= hpx*HN[t];

subject to chp_buyon{t in T}: HA >= HN[t];

#ramp-up/down rate for fuel cells constraint (2.7b)

subject to pow_rup{t in T:t<card(T)}:

P[t+1] - P[t] <= tau*gru*GN[t+1];

subject to pow_rdown{t in T:t<card(T)}:

P[t] - P[t+1] <= tau*grd*GN[t];

subject to chp_rup{t in T:t<card(T)}:

CP[t+1] - CP[t] <= tau*hru*HN[t+1];

subject to chp_rdown{t in T:t<card(T)}:

CP[t] - CP[t+1] <= tau*hrd*HN[t];

#start-up for fuel cells constraint (2.7a)

subject to pow_oninc{t in T:t>1}: GN[t]-GN[t-1] <= GY[t];

subject to chp_oninc{t in T:t>1}: HN[t]-HN[t-1] <= HY[t];
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#natural gas consumption constraints (2.6a) and (2.6b)

subject to ggas{t in T}: UE[1,t] = P[t];

subject to hgas{t in T}: UE[2,t] = CP[t];

subject to bgas{t in T}:

BNG[t] = (ws/fb)*(wh*WD[t]-wh*UE[5,t]-UE[6,t]+UE[3,t]);

#electric efficiency constraint (2.5a)

subject to pow_eff{t in T}: UE[8,t] = 0.61*GN[t]-0.02*P[t];

subject to chp_eff{t in T}: UE[9,t] = 0.61*HN[t]-0.02*CP[t];

#water tank acquisition constraint (2.11a)

subject to tankacq1: WB <= HA;

subject to tankacq2: HNhi[1]*WB >= HA;

#water tank temp constraints (2.10a)-(2.10e)

subject to tanktemp{t in T:t>1}:

ws*UE[10,t] - ws*UE[10,t-1] + ws*wd*UE[4,t-1] =

tau*we*fs*ft*WC[t-1] - tau*we*fs*UE[11,t-1]

- tau*ws*UE[6,t-1] + tau*ws*wr*WD[t-1];

subject to temp1{t in T}: W[t] <= wr + (wu-wr)*WB;

subject to temp3{t in T}: W[t] <= wr + 0.1 + (wu-wr-0.1)*WX[t];

subject to temp4{t in T}: W[t] >= wr + 0.1*WX[t];

subject to temp5{t in T}: W[t] <= wh+(wu-wh)*WY[t];

subject to temp6{t in T}: W[t] >= wh-(wh-wr)*(1-WY[t]);

subject to temp7: W[1] = W[card(T)];

#water tank heat from fuel cells constraint (2.9a)
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subject to tankheat1{t in T}: WC[t] <= fh*HNG[t];

#battery state-of-charge constraints (2.8a) and (2.8c)

subject to soc{t in T:t>1}:

SC[t] = SC[t-1] + tau*(sce*CR[t-1]-DR[t-1]);

subject to soc_init: SC[1] = SC[card(T)];

#max/min state-of-charge constraint (2.8b)

subject to st_upcap{t in T:t>1}: SC[t] <= sx*SA;

subject to st_locap{t in T:t>1}: SC[t] >= msc*sx*SA;

#battery charge/deplete rate constraints (2.4a) and (2.4b)

subject to charge{t in T}: CR[t] <= scr*SA;

subject to deplete{t in T}: DR[t] <= sdr*SA;

#---------------------------------------------------------------------

# Underestimator Constraints

#---------------------------------------------------------------------

#trilinear term constraints

subject to under5{t in T}: UE[3,t] >=

(WD[t]*Wlo[t]*WYlo[t])+(WDlo[t]*W[t]*WYlo[t])+(WDlo[t]*Wlo[t]*WY[t])

-2*(WDlo[t]*Wlo[t]*WYlo[t]);

subject to under6{t in T}: UE[3,t] >=

(WD[t]*Whi[t]*WYhi[t])+(WDhi[t]*W[t]*WYlo[t])+(WDhi[t]*Wlo[t]*WY[t])

-(WDhi[t]*Wlo[t]*WYlo[t])-(WDhi[t]*Whi[t]*WYhi[t]);

subject to under7{t in T}: UE[3,t] >=
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(WD[t]*Wlo[t]*WYlo[t])+(WDlo[t]*W[t]*WYhi[t])+(WDlo[t]*Whi[t]*WY[t])

-(WDlo[t]*Whi[t]*WYhi[t])-(WDlo[t]*Wlo[t]*WYlo[t]);

subject to under8{t in T}: UE[3,t] >=

(WD[t]*Whi[t]*WYlo[t])+(WDhi[t]*W[t]*WYhi[t])+(WDlo[t]*Whi[t]*WY[t])

-(WDlo[t]*Whi[t]*WYlo[t])-(WDhi[t]*Whi[t]*WYhi[t]);

subject to under9{t in T}: UE[3,t] >=

(WD[t]*Wlo[t]*WYhi[t])+(WDlo[t]*W[t]*WYlo[t])+(WDhi[t]*Wlo[t]*WY[t])

-(WDhi[t]*Wlo[t]*WYhi[t])-(WDlo[t]*Wlo[t]*WYlo[t]);

subject to under10{t in T}: UE[3,t] >=

(WD[t]*Wlo[t]*WYhi[t])+(WDlo[t]*W[t]*WYhi[t])+(WDhi[t]*Whi[t]*WY[t])

-(WDlo[t]*Wlo[t]*WYhi[t])-(WDhi[t]*Whi[t]*WYhi[t]);

subject to under11{t in T}: UE[3,t] >=

(WD[t]*Whi[t]*WYlo[t])+(WDhi[t]*W[t]*WYlo[t])+(WDlo[t]*Wlo[t]*WY[t])

-(WDhi[t]*Whi[t]*WYlo[t])-(WDlo[t]*Wlo[t]*WYlo[t]);

subject to under12{t in T}: UE[3,t] >=

(WD[t]*Whi[t]*WYhi[t])+(WDhi[t]*W[t]*WYhi[t])+(WDhi[t]*Whi[t]*WY[t])

-2*(WDhi[t]*Whi[t]*WYhi[t]);

subject to under13{t in T}: UE[4,t] >=

(WA*Wlo[t]*WXlo[t])+(WAlo*W[t]*WXlo[t])+(WAlo*Wlo[t]*WX[t])

-2*(WAlo*Wlo[t]*WXlo[t]);

subject to under14{t in T}: UE[4,t] >=

(WA*Whi[t]*WXhi[t])+(WAhi*W[t]*WXlo[t])+(WAhi*Wlo[t]*WX[t])

-(WAhi*Wlo[t]*WXlo[t])-(WAhi*Whi[t]*WXhi[t]);

subject to under15{t in T}: UE[4,t] >=

(WA*Wlo[t]*WXlo[t])+(WAlo*W[t]*WXhi[t])+(WAlo*Whi[t]*WX[t])

-(WAlo*Whi[t]*WXhi[t])-(WAlo*Wlo[t]*WXlo[t]);
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subject to under16{t in T}: UE[4,t] >=

(WA*Whi[t]*WXlo[t])+(WAhi*W[t]*WXhi[t])+(WAlo*Whi[t]*WX[t])

-(WAlo*Whi[t]*WXlo[t])-(WAhi*Whi[t]*WXhi[t]);

subject to under17{t in T}: UE[4,t] >=

(WA*Wlo[t]*WXhi[t])+(WAlo*W[t]*WXlo[t])+(WAhi*Wlo[t]*WX[t])

-(WAhi*Wlo[t]*WXhi[t])-(WAlo*Wlo[t]*WXlo[t]);

subject to under18{t in T}: UE[4,t] >=

(WA*Wlo[t]*WXhi[t])+(WAlo*W[t]*WXhi[t])+(WAhi*Whi[t]*WX[t])

-(WAlo*Wlo[t]*WXhi[t])-(WAhi*Whi[t]*WXhi[t]);

subject to under19{t in T}: UE[4,t] >=

(WA*Whi[t]*WXlo[t])+(WAhi*W[t]*WXlo[t])+(WAlo*Wlo[t]*WX[t])

-(WAhi*Whi[t]*WXlo[t])-(WAlo*Wlo[t]*WXlo[t]);

subject to under20{t in T}: UE[4,t] >=

(WA*Whi[t]*WXhi[t])+(WAhi*W[t]*WXhi[t])+(WAhi*Whi[t]*WX[t])

-2*(WAhi*Whi[t]*WXhi[t]);

#bilinear term constraints

subject to under1{t in T}: UE[1,t] >=

(GGlo[t]*GE[t])+(GElo[t]*GNG[t])-(GGlo[t]*GElo[t]);

subject to under2{t in T}: UE[1,t] >=

(GGhi[t]*GE[t])+(GEhi[t]*GNG[t])-(GGhi[t]*GEhi[t]);

subject to under49{t in T}: UE[1,t] <=

(GGhi[t]*GE[t])+(GElo[t]*GNG[t])-(GGhi[t]*GElo[t]);

subject to under50{t in T}: UE[1,t] <=

(GGlo[t]*GE[t])+(GEhi[t]*GNG[t])-(GGlo[t]*GEhi[t]);

subject to under3{t in T}: UE[2,t] >=
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(HGlo[t]*HE[t])+(HElo[t]*HNG[t])-(HGlo[t]*HElo[t]);

subject to under4{t in T}: UE[2,t] >=

(HGhi[t]*HE[t])+(HEhi[t]*HNG[t])-(HGhi[t]*HEhi[t]);

subject to under51{t in T}: UE[2,t] <=

(HGhi[t]*HE[t])+(HElo[t]*HNG[t])-(HGhi[t]*HElo[t]);

subject to under52{t in T}: UE[2,t] <=

(HGlo[t]*HE[t])+(HEhi[t]*HNG[t])-(HGlo[t]*HEhi[t]);

subject to under21{t in T}: UE[5,t] >=

(WDlo[t]*WY[t])+(WYlo[t]*WD[t])-(WDlo[t]*WYlo[t]);

subject to under22{t in T}: UE[5,t] >=

(WDhi[t]*WY[t])+(WYhi[t]*WD[t])-(WDhi[t]*WYhi[t]);

subject to under23{t in T}: UE[5,t] <=

(WDhi[t]*WY[t])+(WYlo[t]*WD[t])-(WDhi[t]*WYlo[t]);

subject to under24{t in T}: UE[5,t] <=

(WDlo[t]*WY[t])+(WYhi[t]*WD[t])-(WDlo[t]*WYhi[t]);

subject to under25{t in T}: UE[6,t] >=

(WDlo[t]*W[t])+(Wlo[t]*WD[t])-(WDlo[t]*Wlo[t]);

subject to under26{t in T}: UE[6,t] >=

(WDhi[t]*W[t])+(Whi[t]*WD[t])-(WDhi[t]*Whi[t]);

subject to under27{t in T}: UE[6,t] <=

(WDhi[t]*W[t])+(Wlo[t]*WD[t])-(WDhi[t]*Wlo[t]);

subject to under28{t in T}: UE[6,t] <=

(WDlo[t]*W[t])+(Whi[t]*WD[t])-(WDlo[t]*Whi[t]);

subject to under29{t in T}: UE[7,t] >=
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(WYlo[t]*W[t])+(Wlo[t]*WY[t])-(WYlo[t]*Wlo[t]);

subject to under30{t in T}: UE[7,t] >=

(WYhi[t]*W[t])+(Whi[t]*WY[t])-(WYhi[t]*Whi[t]);

subject to under31{t in T}: UE[7,t] <=

(WYhi[t]*W[t])+(Wlo[t]*WY[t])-(WYhi[t]*Wlo[t]);

subject to under32{t in T}: UE[7,t] <=

(WYlo[t]*W[t])+(Whi[t]*WY[t])-(WYlo[t]*Whi[t]);

subject to under33{t in T}: UE[8,t] >=

(GNlo[t]*GE[t])+(GElo[t]*GN[t])-(GNlo[t]*GElo[t]);

subject to under34{t in T}: UE[8,t] >=

(GNhi[t]*GE[t])+(GEhi[t]*GN[t])-(GNhi[t]*GEhi[t]);

subject to under35{t in T}: UE[8,t] <=

(GNhi[t]*GE[t])+(GElo[t]*GN[t])-(GNhi[t]*GElo[t]);

subject to under36{t in T}: UE[8,t] <=

(GNlo[t]*GE[t])+(GEhi[t]*GN[t])-(GNlo[t]*GEhi[t]);

subject to under37{t in T}: UE[9,t] >=

(HNlo[t]*HE[t])+(HElo[t]*HN[t])-(HNlo[t]*HElo[t]);

subject to under38{t in T}: UE[9,t] >=

(HNhi[t]*HE[t])+(HEhi[t]*HN[t])-(HNhi[t]*HEhi[t]);

subject to under39{t in T}: UE[9,t] <=

(HNhi[t]*HE[t])+(HElo[t]*HN[t])-(HNhi[t]*HElo[t]);

subject to under40{t in T}: UE[9,t] <=

(HNlo[t]*HE[t])+(HEhi[t]*HN[t])-(HNlo[t]*HEhi[t]);

subject to under41{t in T}: UE[10,t] >=
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(WAlo*W[t])+(Wlo[t]*WA)-(WAlo*Wlo[t]);

subject to under42{t in T}: UE[10,t] >=

(WAhi*W[t])+(Whi[t]*WA)-(WAhi*Whi[t]);

subject to under43{t in T}: UE[10,t] <=

(WAhi*W[t])+(Wlo[t]*WA)-(WAhi*Wlo[t]);

subject to under44{t in T}: UE[10,t] <=

(WAlo*W[t])+(Whi[t]*WA)-(WAlo*Whi[t]);

subject to under45{t in T}: UE[11,t] >=

(WClo[t]*W[t])+(Wlo[t]*WC[t])-(WClo[t]*Wlo[t]);

subject to under46{t in T}: UE[11,t] >=

(WChi[t]*W[t])+(Whi[t]*WC[t])-(WChi[t]*Whi[t]);

subject to under47{t in T}: UE[11,t] <=

(WChi[t]*W[t])+(Wlo[t]*WC[t])-(WChi[t]*Wlo[t]);

subject to under48{t in T}: UE[11,t] <=

(WClo[t]*W[t])+(Whi[t]*WC[t])-(WClo[t]*Whi[t]);

#######Linearization Problem for Upper Bound##########

param dGE{t in T};

param dHE{t in T};

param dW{t in T};

param dWX{t in T};

param dWY{t in T};

var dWA >=0;
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var dWB binary;

var dWD{t in T} >=0;

var dWC{t in T} >=0;

var dBNG{t in T} >=0;

var dGA >=0, integer;

var dHA >=0, integer;

var dVA >=0, integer;

var dSA >=0, integer;

var dGNG{t in T} >=0;

var dHNG{t in T} >=0;

var dGN{t in T} >=0, integer;

var dHN{t in T} >=0, integer;

var dGY{t in T:t>1} >=0;

var dHY{t in T:t>1} >=0;

var dP{t in T} >=0;

var dCP{t in T} >=0;

var dV{t in T} >=0;

var dSC{t in T} >=0;

var dCR{t in T} >=0;

var dDR{t in T} >=0;

var dEP{t in T} >=0;

var dES{t in T} >=0;

##For one-year instance, remove next comment and add comment

##in front of second var.

#var dE{n in N} >= 0;

var dE >= 0;
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#----------------------------------------------------------

# Minimize the cost using fixed efficiencies/temps from (U)

#----------------------------------------------------------

minimize heuristic_cost:

gaq*gpx*dGA + haq*hpx*dHA + vaq*vpx*dVA + saq*sx*dSA + waq*(dWA-wx) +

tau*sum{t in T}((bom*fb+cg[t]+zt*zg)*dBNG[t])+

tau*sum{t in T}(gom*dP[t] + hom*dCP[t] + vom*dV[t]) +

sum{t in T:t>1}((cg[t]+zt*zg)*(((gmt*gpx)/fe)*dGY[t]+

((hmt*hpx)/fe)*dHY[t]))+

tau*sum{t in T}((cg[t]+zt*zg)*(dGNG[t]+dHNG[t])) +

tau*sum{t in T}((ce[t]+zt*zu)*dEP[t])- tau*sum{t in T}(ce[t]*dES[t])+

##For one-year instance, remove next comment and add comment

##in front of second line.

#sum{n in N}(cd[n]*dE[n]);

0.03*cd*dE;

#-----------------------------------------------------

# Constraints using fixed efficiencies/temps from (U)

#-----------------------------------------------------

#power and heat demand constraints

subject to ddemande{t in T}:

dP[t] + dCP[t] + dV[t] + (sde*dDR[t]-dCR[t]) + (dEP[t]-dES[t]) = de[t];

subject to ddemandh{t in T}:
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-dWD[t]*(ws*(wh-wr))*wl + (ws*(wh-wr))*dW[t]*dWD[t] =

dh[t]*(dW[t]-wl-dW[t]*dWY[t]+wh*dWY[t]);

#max monthly grid demand constraint

##For one-year instance, remove next comment and add comment

##in front of second constraint.

#subject to dminmax{n in N,t in Tn[n]}: dE[n] >= dEP[t];

subject to dminmax{t in T}: dE >= dEP[t];

#monthly net generator constraint

##For one-year instance, remove next comment and add comment

##in front of second constraint.

#subject to dnetgen{n in N}:

sum{t in Tn[n]}dES[t] <= sum{t in Tn[n]}dEP[t];

subject to dnetgen: sum{t in T}dES[t] <= sum{t in T}dEP[t];

#max power from PV cells constraint

subject to dmaxpowv{t in T}: dV[t] <= pvf[t]*vpx*dVA;

#max/min power from fuel cells constraints

subject to dpow_lo{t in T}: dP[t] >= gmt*gpx*dGN[t];

subject to dpow_hi{t in T}: dP[t] <= gpx*dGN[t];

subject to dpow_buyon{t in T}: dGA >= dGN[t];

subject to dchp_lo{t in T}: dCP[t] >= hmt*hpx*dHN[t];

subject to dchp_hi{t in T}: dCP[t] <= hpx*dHN[t];

subject to dchp_buyon{t in T}: dHA >= dHN[t];
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#ramp-up/down rate for fuel cells constraints

subject to dpow_rup{t in T:t<card(T)}:

dP[t+1] - dP[t] <= tau*gru*dGN[t+1];

subject to dpow_rdown{t in T:t<card(T)}:

dP[t] - dP[t+1] <= tau*grd*dGN[t];

subject to dchp_rup{t in T:t<card(T)}:

dCP[t+1] - dCP[t] <= tau*hru*dHN[t+1];

subject to dchp_rdown{t in T:t<card(T)}:

dCP[t] - dCP[t+1] <= tau*hrd*dHN[t];

#start-up for fuel cells constraints

subject to dpow_oninc{t in T:t>1}: dGN[t]-dGN[t-1] <= dGY[t];

subject to dchp_oninc{t in T:t>1}: dHN[t]-dHN[t-1] <= dHY[t];

#natural gas consumption constraints

subject to dggas{t in T}: dGE[t]*dGNG[t] = dP[t];

subject to dhgas{t in T}: dHE[t]*dHNG[t] = dCP[t];

subject to dbgas{t in T}:

dBNG[t] = (ws/fb)*(wh*dWD[t]-wh*dWY[t]*dWD[t]-dW[t]*dWD[t]+

dWD[t]*dW[t]*dWY[t]);

#electric efficiency constraints

subject to dpow_eff{t in T}: dGE[t]*dGN[t] = 0.61*dGN[t]-0.02*dP[t];

subject to dchp_eff{t in T}: dHE[t]*dHN[t] = 0.61*dHN[t]-0.02*dCP[t];

#water tank temp contraints

subject to dtanktemp{t in T:t>1}:
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ws*dW[t]*dWA - ws*dW[t-1]*dWA + ws*wd*dWA*dWX[t-1]*dW[t-1] =

tau*we*fs*ft*dWC[t-1] - tau*we*fs*dW[t-1]*dWC[t-1]

- tau*ws*dW[t-1]*dWD[t-1] + tau*ws*wr*dWD[t-1];

subject to dtemp1{t in T}: dW[t] <= wr + (wu-wr)*dWB;

#water tank heating from fuel cells constraint

subject to dtankheat1{t in T}: dWC[t] <= fh*dHNG[t];

#water tank acquisition constraints

subject to dtankacq1: dWB <= dHA;

subject to dtankacq2: HNhi[1]*dWB >= dHA;

subject to dtanksize1: dWA >= wx;

subject to dtanksize2: dWA <= wxx;

#battery state-of-charge constraints

subject to dsoc{t in T:t>1}:

dSC[t] = dSC[t-1] + tau*(sce*dCR[t-1]-dDR[t-1]);

subject to dsoc_init: dSC[1] = dSC[card(T)];

#battery max/min state-of-charge constraints

subject to dst_upcap{t in T:t>1}: dSC[t] <= sx*dSA;

subject to dst_locap{t in T:t>1}: dSC[t] >= msc*sx*dSA;

#battery charge/deplete rate constraints

subject to dcharge{t in T}: dCR[t] <= scr*dSA;

subject to ddeplete{t in T}: dDR[t] <= sdr*dSA;
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A.2 Data File

#time increment

param tau:= 1;

#carbon emissions tax ($/kg) and rates (kg/kWh)

param zt:= 0.02;

param zg:= 0.18;

param zu:= 0.27;

#Utility rates, demand, and PV capacity

param cd:= 6.39;

param: T: dh de pvf cg ce:=

1 66 107 0.00 0.02 0.09

2 66 109 0.00 0.02 0.09

3 66 106 0.00 0.02 0.09

4 88 110 0.00 0.02 0.09

5 148 139 0.00 0.02 0.09

6 263 246 0.00 0.02 0.09

7 363 309 0.02 0.02 0.09

8 280 270 0.25 0.02 0.09

9 205 250 0.44 0.02 0.12

10 167 206 0.56 0.02 0.12

11 124 212 0.67 0.02 0.12

12 124 214 0.70 0.02 0.12

13 117 205 0.70 0.02 0.21

14 122 207 0.64 0.02 0.21

15 123 205 0.52 0.02 0.21
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16 91 232 0.35 0.02 0.21

17 141 263 0.14 0.02 0.21

18 250 314 0.00 0.02 0.21

19 187 321 0.00 0.02 0.12

20 187 346 0.00 0.02 0.12

21 274 323 0.00 0.02 0.12

22 208 254 0.00 0.02 0.12

23 131 184 0.00 0.02 0.12

24 86 128 0.00 0.02 0.09;

#daily cost/kW or kWh based on initial cost of $4000/kW,

#$4,800/kW, $4,000/kW, $200/kWh, 5% interest rate,

#15 year lifetime for gens, and 5 years for batteries

#at 70% costs

param gaq:= 1.09;

param haq:= 1.30;

param vaq:= 1.09;

param saq:= 0.10;

param waq:= 0.00;

#variable O&M costs

param gom:= 0.02;

param hom:= 0.02;

param vom:= 0.04;

param bom:= 0.01;

#kW or kWh max capacity
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param gpx:= 10;

param hpx:= 10;

param vpx:= 10;

param sx:= 10;

#water tank params

param wx:= 1000;

param wxx:=4000;

param wu:= 85;

param wh:= 60;

param wr:= 16;

param wl:= 15;

param we:= 0.8;

param wd:= 0.01;

param ws:=0.004;

#CHP exhaust param

param fh:= 2.05;

param ft:= 365;

param fs:= 0.0003;

#min turn-down fcells and min state-of-charge batteries

param gmt:= 0.2;

param hmt:= 0.2;

param msc:= 0.3;

#max ramping of fcells and charging of batteries
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param gru:= 4;

param grd:= 4;

param hru:= 4;

param hrd:= 4;

param scr:= 1;

param sdr:= 2.5;

#power-heat efficiencies of fcells

#and charge-discharge of batteries

param fe:= 0.41;

param fb:= 0.75;

param sce:= 0.9;

param sde:= 0.9;

###########################################

#set of underestimator variables

set U:= 1 2 3 4 5 6 7 8 9 10 11;

#underestimator data

param iWAhi:=4000;

param iWAlo:=1000;

param: iGNhi iGNlo iHNhi iHNlo iGGhi iGGlo iHGhi iHGlo iGEhi iGElo

iHEhi iHElo iWChi iWClo iWDhi iWDlo iWhi iWlo iWXhi iWXlo iWYhi iWYlo:=

1 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 375 241 85 16 1 0 1 0
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2 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 375 241 85 16 1 0 1 0

3 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 375 241 85 16 1 0 1 0

4 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 500 321 85 16 1 0 1 0

5 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 841 540 85 16 1 0 1 0

6 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1495 960 85 16 1 0 1 0

7 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 2063 1325 85 16 1 0 1 0

8 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1591 1022 85 16 1 0 1 0

9 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1165 748 85 16 1 0 1 0

10 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 949 609 85 16 1 0 1 0

11 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 705 452 85 16 1 0 1 0

12 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 705 452 85 16 1 0 1 0

13 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 665 427 85 16 1 0 1 0

14 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 694 445 85 16 1 0 1 0

15 35 0 35 0 854 0 854 0 0.57 0.41
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0.57 0.41 1750 0 699 449 85 16 1 0 1 0

16 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 518 332 85 16 1 0 1 0

17 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 802 515 85 16 1 0 1 0

18 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1421 913 85 16 1 0 1 0

19 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1063 683 85 16 1 0 1 0

20 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1063 683 85 16 1 0 1 0

21 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1557 1000 85 16 1 0 1 0

22 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 1182 759 85 16 1 0 1 0

23 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 745 478 85 16 1 0 1 0

24 35 0 35 0 854 0 854 0 0.57 0.41

0.57 0.41 1750 0 489 314 85 16 1 0 1 0;

param: jWhi jWYhi jWDlo :=

1 85 1 241

2 85 1 241

3 85 1 241

4 85 1 321

5 85 1 540

6 85 1 960
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7 48 0 2062

8 74 1 1213

9 85 1 748

10 85 1 609

11 85 1 452

12 85 1 452

13 85 1 427

14 85 1 445

15 85 1 449

16 85 1 332

17 85 1 515

18 85 1 913

19 85 1 683

20 85 1 683

21 83 1 1030

22 85 1 759

23 85 1 478

24 85 1 314;

A.3 Run File

param starttime2;

let starttime2:= time();

model CHP_DG_under2.mod;

data LA_Hotel_Power1.dat;

option presolve 0;

option solver cplexamp123;
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option cplex_options ’timing 1 feasibility 0.01 mipgap 0.01

mipdisplay 3 mipemphasis 2 timelimit 36000’;

option display_1col 9000;

problem UnderEstimate:

GA,HA,VA,SA,WA,WB,GN,HN,GY,HY,P,CP,V,WC,WD,SC,CR,DR,EP,ES,E,GE,HE,

GNG,HNG,BNG,WY,WX,W,UE,

under_cost,

demande,demandh,minmax,netgen,maxpowv,pow_lo,pow_hi,pow_buyon,

chp_lo,chp_hi,chp_buyon,pow_rup,pow_rdown,chp_rup,chp_rdown,

pow_oninc,chp_oninc,ggas,hgas,bgas,pow_eff,chp_eff,

tankacq1,tankacq2,tanktemp,temp1,tankheat1,temp3,temp4,temp5,temp6,temp7,

soc,soc_init,st_upcap,st_locap,charge,deplete,

under1,under2,under3,under4,under5,under6,under7,under8,under9,under10,

under11,under12,under13,under14,under15,under16,under17,under18,under19,

under20,under21,under22,under23,under24,under25,under26,under27,under28,

under29,under30,under31,under32,under33,under34,under35,under36,under37,

under38,under39,under40,under41,under42,under43,under44,under45,under46,

under47,under48,under49,under50,under51,under52;

problem Heuristic:

dGA,dHA,dSA,dVA,dGN,dHN,dGY,dHY,dP,dCP,dV,dSC,dCR,dDR,dEP,dES,dE,

dGNG,dHNG,dWA,dWB,dWD,dWC,dBNG,

heuristic_cost,

ddemande,dminmax,dnetgen,dmaxpowv,dpow_lo,dpow_hi,dpow_buyon,

dchp_lo,dchp_hi,dchp_buyon,dpow_rup,dpow_rdown,dchp_rup,dchp_rdown,

dpow_oninc,dchp_oninc,dggas,dhgas,dpow_eff,dchp_eff,ddemandh,dbgas,
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dtanktemp,dtemp1,dtankheat1,dtankacq1,dtankacq2,dtanksize1,dtanksize2,

dsoc,dsoc_init,dst_upcap,dst_locap,dcharge,ddeplete;

param grid_cost;

let grid_cost:= 0.03*cd*(max{t in T}de[t]) +

tau*sum{t in T}((ce[t]+zt*zu)*de[t]) +

tau*sum{t in T}((bom*fb+cg[t]+zt*zg)*(dh[t]/fb));

##For one-year instance, replace first component

##of grid_cost with the following:

#sum{n in N}(cd[n]*(max{t in Tn[n]}de[t]))

#####Underestimation Problem###########

let {t in T}GNhi[t]:= iGNhi[t];

let {t in T}GNlo[t]:= iGNlo[t];

let {t in T}GGhi[t]:= iGGhi[t];

let {t in T}GGlo[t]:= iGGlo[t];

let {t in T}GEhi[t]:= iGEhi[t];

let {t in T}GElo[t]:= iGElo[t];

let {t in T}HNhi[t]:= iHNhi[t];

let {t in T}HNlo[t]:= iHNlo[t];

let {t in T}HGhi[t]:= iHGhi[t];

let {t in T}HGlo[t]:= iHGlo[t];

let {t in T}HEhi[t]:= iHEhi[t];

let {t in T}HElo[t]:= iHElo[t];

let {t in T}WChi[t]:= iWChi[t];
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let {t in T}WClo[t]:= iWClo[t];

let {t in T}WDhi[t]:= iWDhi[t];

let {t in T}WDlo[t]:= jWDlo[t];

let {t in T}Whi[t]:= jWhi[t];

let {t in T}Wlo[t]:= iWlo[t];

let {t in T}WXhi[t]:= iWXhi[t];

let {t in T}WXlo[t]:= iWXlo[t];

let {t in T}WYhi[t]:= jWYhi[t];

let {t in T}WYlo[t]:= iWYlo[t];

let WAhi:= iWAhi;

let WAlo:= iWAlo;

solve UnderEstimate;

param lowerbound_totalcost;

let lowerbound_totalcost:= under_cost;

param GA_low;

let GA_low:= GA;

param HA_low;

let HA_low:= HA;

param VA_low;

let VA_low:= VA;

param SA_low;

let SA_low:= SA;

param WA_low;

let WA_low:= WA;
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#####Linearization Heuristic###########

##Without heat capture

let {t in T}dGE[t]:=

(if GN[t]>0 then 0.61-0.02*(P[t]/GN[t]) else 0.41);

let {t in T}dHE[t]:=

(if HN[t]>0 then 0.61-0.02*(CP[t]/HN[t]) else 0.41);

let {t in T}dW[t]:= wr;

let {t in T}dWX[t]:= 0;

let {t in T}dWY[t]:= 0;

solve Heuristic;

param upperbound_totalcost_pow;

let upperbound_totalcost_pow:= heuristic_cost;

param dGA_pow;

let dGA_pow:= dGA;

param dHA_pow;

let dHA_pow:= dHA;

param dVA_pow;

let dVA_pow:= dVA;

param dSA_pow;

let dSA_pow:= dSA;

param dWA_pow;

let dWA_pow:= dWA;
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##With heat capture

let dW[1]:=wh;

let dWX[1]:=1;

let dWY[1]:=0;

param flow{t in T};

let flow[1]:= dh[1]/(ws*(wh-wr));

for {t in T: t>1}{

let dW[t]:= max(wr, min(wu, (1-wd*dWX[t-1])*dW[t-1]+(1/(ws*WA))*

(tau*we*fs*fh*(CP[t-1]/dHE[t-1])*(ft-dW[t-1])-tau*ws*flow[t-1]*

(dW[t-1]-wr))));

let dWX[t]:= (if dW[t]>wr+0.1 then 1 else 0);

let dWY[t]:= (if dW[t]>wh then 1 else 0);

let flow[t]:= (1-(1-((wh-wl)/(dW[t]-wl)))*dWY[t])*(dh[t]/(ws*(wh-wr)));

}

let dW[1]:=dW[card(T)];

let dWX[1]:=(if dW[1]>wr+0.1 then 1 else 0);

let dWY[1]:=(if dW[1]>wh then 1 else 0);

let flow[1]:= (1-(1-((wh-wl)/(dW[1]-wl)))*dWY[1])*(dh[1]/(ws*(wh-wr)));

for {t in T: t>1}{

let dW[t]:= max(wr, min(wu, (1-wd*dWX[t-1])*dW[t-1]+(1/(ws*WA))*

(tau*we*fs*fh*(CP[t-1]/dHE[t-1])*(ft-dW[t-1])-tau*ws*flow[t-1]*

(dW[t-1]-wr))));

let dWX[t]:= (if dW[t]>wr+0.1 then 1 else 0);
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let dWY[t]:= (if dW[t]>wh then 1 else 0);

let flow[t]:= (1-(1-((wh-wl)/(dW[t]-wl)))*dWY[t])*(dh[t]/(ws*(wh-wr)));

}

solve Heuristic;

param upperbound_totalcost_chp;

let upperbound_totalcost_chp:= heuristic_cost;

param dGA_chp;

let dGA_chp:= dGA;

param dHA_chp;

let dHA_chp:= dHA;

param dVA_chp;

let dVA_chp:= dVA;

param dSA_chp;

let dSA_chp:= dSA;

param dWA_chp;

let dWA_chp:= dWA;

param runtime2;

let runtime2:= time() - starttime2;

display runtime2,grid_cost,

lowerbound_totalcost,GA_low,HA_low,VA_low,SA_low,WA_low,

upperbound_totalcost_pow,dGA_pow,dHA_pow,dVA_pow,dSA_pow,dWA_pow,

upperbound_totalcost_chp,dGA_chp,dHA_chp,dVA_chp,dSA_chp,dWA_chp,
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dGN,dGY,dP,dGNG,dGE,dHN,dHY,dCP,dHNG,dHE,dW,dWX,dWY,dWC,dWD,dV,

dSC,dCR,dDR,dEP,dES>pruitt_solution.out;

A.4 Out File

runtime2 = 5

grid_cost = 969.318

lowerbound_totalcost = 742.747

GA_low = 3

HA_low = 21

VA_low = 0

SA_low = 5

WA_low = 2453.13

upperbound_totalcost_pow = 869.638

dGA_pow = 29

dHA_pow = 0

dVA_pow = 0

dSA_pow = 5

dWA_pow = 1000

upperbound_totalcost_chp = 823.758

dGA_chp = 3

dHA_chp = 21

dVA_chp = 0

dSA_chp = 7

dWA_chp = 2453.13

: dGN dGY dP dGNG dGE dHN dHY dCP dHNG:=

1 3 . 6 10.5 0.57 21 . 187.1 433.3

2 3 0 6 10.5 0.57 21 0 108 213.0
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3 3 0 6 10.5 0.57 21 0 192 449.5

4 3 0 6 10.5 0.57 21 0 204.4 492.2

5 3 0 6 10.5 0.57 21 0 161.8 354.8

6 3 0 6 10.5 0.57 21 0 204.4 492.2

7 3 0 14 26.5 0.52 21 0 204.4 492.2

8 3 0 18 36.7 0.49 21 0 204.4 492.2

9 3 0 30 73.2 0.41 21 0 210 512.2

10 3 0 30 73.2 0.41 21 0 210 512.2

11 3 0 30 73.2 0.41 21 0 210 512.2

12 3 0 30 73.2 0.41 21 0 210 512.2

13 3 0 30 73.2 0.41 21 0 210 512.2

14 3 0 30 73.2 0.41 21 0 210 512.2

15 3 0 30 73.2 0.41 21 0 210 512.2

16 3 0 30 73.2 0.41 21 0 210 512.2

17 3 0 30 73.2 0.41 21 0 210 512.2

18 3 0 30 73.2 0.41 21 0 210 512.2

19 3 0 30 73.2 0.41 21 0 210 512.2

20 3 0 30 73.2 0.41 21 0 210 512.2

21 3 0 30 73.2 0.41 21 0 210 512.2

22 3 0 30 73.2 0.41 21 0 210 512.2

23 3 0 30 73.2 0.41 21 0 204.4 492.2

24 2 0 18 41.9 0.43 13 0 120.4 283.5;

: dHE dW dWX dWY dWC dWD dV dSC dCR:=

1 0.43 35.0 1 0 888.2 375 0 21 7

2 0.51 38.9 1 0 436.6 375 0 27.3 7

3 0.43 38.5 1 0 921.5 375 0 33.6 7
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4 0.42 42.0 1 0 1009 500 0 39.9 7

5 0.46 44.3 1 0 727.4 840.9 0 46.2 7

6 0.42 39.8 1 0 1009 1494.3 0 52.5 7

7 0.42 32.9 1 0 1009 2062.5 0 58.8 0

8 0.42 26.6 1 0 1009 1590.9 0 58.1 7

9 0.41 27.8 1 0 1050 1164.78 0 64.4 0

10 0.41 30.6 1 0 1050 948.9 0 64.4 0

11 0.41 33.2 1 0 1050 704.5 0 64.4 6.2

12 0.41 36.5 1 0 1050 704.5 0 70 0

13 0.41 38.7 1 0 1050 664.8 0 70 0

14 0.41 40.5 1 0 1050 693.2 0 70 0

15 0.41 41.5 1 0 1050 698.9 0 70 0

16 0.41 42.1 1 0 1050 517.0 0 67.2 0

17 0.41 44.5 1 0 1050 801.2 0 67.2 0

18 0.41 43.0 1 0 1050 1420.5 0 49.7 0

19 0.41 35.2 1 0 1050 1062.5 0 32.2 7

20 0.41 35.0 1 0 1050 1062.5 0 38.5 0

21 0.41 34.9 1 0 1000 1556.8 0 21 0

22 0.41 30.6 1 0 1050 1181.8 0 21 0

23 0.42 31.9 1 0 1009 744.3 0 21 0

24 0.42 35.0 1 0 0 488.6 0 21 0;

: dDR dEP dES:=

1 0 0 79.1

2 0 2 0

3 0 0 85

4 0 0 93.4
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5 0 0 21.8

6 0 42.6 0

7 0.7 90.3 0

8 0 54.6 0

9 0 10 0

10 0 0 34

11 0 0 21.8

12 0 0 26

13 0 0 35

14 0 0 33

15 2.8 0 37.5

16 0 0 8

17 17.5 7.3 0

18 17.5 58.3 0

19 0 88 0

20 17.5 90.3 0

21 0 83 0

22 0 14 0

23 0 0 50.4

24 5.3 0 15.1;
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APPENDIX B - STATE PRICING, EMISSIONS, AND GRID DATA

Table B.1 and Table B.2 list the average price of commercial-sector electricity, the

primary fuel source for all-sector power generation, and the average carbon emissions

rate for all-sector power generation according to the Energy Information Adminis-

tration (EIA) 2009 State Electricity Profiles report (see [54]). The average carbon

emissions rate is calculated as the quotient of the all-sector total carbon emissions

(thousand metric tons) and the all-sector net-generation (MWh).

The net-metering policy and interconnection procedure grades are obtained from

the Network for New Energy Choices (NNEC) 2009 Freeing the Grid report (see [56]).

A grade of “A” indicates that the state policies and procedures actively encourage DG

interconnection and use by, among other reasons, offering full retail credit for exported

power and presenting few barriers to system integration. A grade of “F” indicates

that state policies and procedures deter, or completely block, the interconnection and

use of customer-sited DG systems. A grade of “n/a” indicates there are no state-wide

net-metering or interconnection standards. The NNEC report offers further details

on the methodology used to grade each state.

The average price of commercial-sector natural gas is derived from the EIA 2009

Natural Gas Annual report (see [55]), along with a conversion factor of 302.08 kWh

per thousand cubic feet. Table B.3 and Table B.4 provide the same data for 2010,

based on the EIA reports (see [59] and [60]) and NNEC report (see [58]) for that year.
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Table B.1: 2009 state energy pricing, carbon emissions rates, and net-metering grades
for Alabama through Missouri

Electricity Prime Carbon Net- Inter- Gas
Price Fuel Rate meter connect Price

State [$/kWh] Source [kg/kWh] Policy Procedure [$/kWh]

AL 0.101 coal 0.483 n/a n/a 0.049
AK 0.145 gas 0.633 n/a n/a 0.031
AZ 0.094 coal 0.478 A C 0.040
AR 0.076 coal 0.530 C F 0.035
CA 0.134 gas 0.290 A B 0.026
CO 0.082 coal 0.771 A B 0.025
CT 0.169 nuclear 0.258 A D 0.033
DE 0.120 coal 0.856 A D 0.053
FL 0.108 gas 0.527 A C 0.037
GA 0.089 coal 0.598 F F 0.039
HI 0.219 petro 0.787 C F 0.099
ID 0.065 hydro 0.078 F n/a 0.032
IL 0.090 nuclear 0.511 B B 0.029
IN 0.083 coal 0.952 F D 0.030
IA 0.076 coal 0.829 C F 0.026
KS 0.079 coal 0.776 B F 0.033
KY 0.076 coal 0.951 B F 0.036
LA 0.077 gas 0.585 B F 0.035
ME 0.126 gas 0.288 B n/a 0.046
MD 0.120 coal 0.586 A B 0.036
MA 0.154 gas 0.505 B B 0.043
MI 0.092 coal 0.727 B C 0.031
MN 0.079 coal 0.642 C F 0.026
MS 0.095 gas 0.482 n/a n/a 0.031
MO 0.070 coal 0.846 C F 0.036
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Table B.2: 2009 state energy pricing, carbon emissions rates, and net-metering grades
for Montana through Wyoming

Electricity Prime Carbon Net- Inter- Gas
Price Fuel Rate meter connect Price

State [$/kWh] Source [kg/kWh] Policy Procedure [$/kWh]

MT 0.083 coal 0.657 C F 0.031
NE 0.073 coal 0.703 B F 0.025
NV 0.106 gas 0.485 B B 0.036
NH 0.146 nuclear 0.273 C C 0.048
NJ 0.138 nuclear 0.260 A B 0.034
NM 0.084 coal 0.844 B B 0.025
NY 0.155 nuclear 0.286 D B 0.035
NC 0.080 coal 0.548 D B 0.038
ND 0.068 coal 0.954 D n/a 0.025
OH 0.097 coal 0.846 B C 0.034
OK 0.068 gas 0.693 D n/a 0.035
OR 0.075 hydro 0.166 A B 0.039
PA 0.095 coal 0.531 A B 0.039
RI 0.137 gas 0.413 B n/a 0.050
SC 0.087 nuclear 0.381 n/a F 0.037
SD 0.071 hydro 0.428 n/a B 0.025
TN 0.096 coal 0.545 n/a n/a 0.035
TX 0.097 gas 0.611 n/a D 0.027
UT 0.070 coal 0.839 A F 0.025
VT 0.129 nuclear 0.001 B C 0.043
VA 0.081 nuclear 0.516 B A 0.034
WA 0.070 hydro 0.129 C D 0.041
WV 0.068 coal 0.931 D n/a 0.047
WI 0.096 coal 0.738 D D 0.030
WY 0.073 coal 0.971 B F 0.027

173



Table B.3: 2010 state energy pricing, carbon emissions rates, and net-metering grades
for Alabama through Missouri

Electricity Prime Carbon Net- Inter- Gas
Price Fuel Rate meter connect Price

State [$/kWh] Source [kg/kWh] Policy Procedure [$/kWh]

AL 0.102 coal 0.522 n/a n/a 0.044
AK 0.140 gas 0.610 B n/a 0.029
AZ 0.095 coal 0.498 A n/a 0.035
AR 0.073 coal 0.558 B n/a 0.029
CA 0.131 gas 0.271 A B 0.027
CO 0.091 coal 0.798 A B 0.025
CT 0.165 nuclear 0.276 A B 0.032
DE 0.114 gas 0.744 A F 0.044
FL 0.098 gas 0.540 A B 0.035
GA 0.091 coal 0.600 F n/a 0.036
HI 0.259 petro 0.765 B F 0.121
ID 0.066 hydro 0.101 n/a n/a 0.027
IL 0.089 nuclear 0.512 B B 0.029
IN 0.084 coal 0.929 D C 0.025
IA 0.079 coal 0.821 B B 0.026
KS 0.083 coal 0.758 B n/a 0.032
KY 0.079 coal 0.949 B F 0.029
LA 0.085 gas 0.571 B n/a 0.033
ME 0.125 gas 0.291 B A 0.039
MD 0.118 coal 0.605 A B 0.033
MA 0.145 gas 0.474 A A 0.040
MI 0.098 coal 0.668 A C 0.030
MN 0.084 coal 0.614 B D 0.025
MS 0.093 gas 0.493 n/a n/a 0.029
MO 0.075 coal 0.854 C n/a 0.034
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Table B.4: 2010 state energy pricing, carbon emissions rates, and net-metering grades
for Montana through Wyoming

Electricity Prime Carbon Net- Inter- Gas
Price Fuel Rate meter connect Price

State [$/kWh] Source [kg/kWh] Policy Procedure [$/kWh]

MT 0.086 coal 0.684 C C 0.028
NE 0.076 coal 0.668 B n/a 0.023
NV 0.098 gas 0.484 B B 0.032
NH 0.143 nuclear 0.250 B D 0.042
NJ 0.139 nuclear 0.292 A B 0.033
NM 0.086 coal 0.810 B B 0.025
NY 0.163 gas 0.304 B B 0.036
NC 0.082 coal 0.569 D B 0.034
ND 0.072 coal 0.894 D n/a 0.023
OH 0.097 coal 0.849 A C 0.031
OK 0.075 gas 0.686 F n/a 0.032
OR 0.076 hydro 0.183 A B 0.033
PA 0.101 coal 0.535 A B 0.035
RI 0.131 gas 0.416 B n/a 0.048
SC 0.089 nuclear 0.397 F F 0.034
SD 0.076 hydro 0.359 n/a B 0.024
TN 0.097 coal 0.585 n/a n/a 0.031
TX 0.092 gas 0.611 n/a C 0.026
UT 0.072 coal 0.841 A A 0.023
VT 0.134 nuclear 0.001 B C 0.039
VA 0.077 nuclear 0.544 B A 0.032
WA 0.074 hydro 0.135 B D 0.035
WV 0.077 coal 0.919 A B 0.034
WI 0.100 coal 0.734 C D 0.028
WY 0.074 coal 0.950 B n/a 0.024
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