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ABSTRACT
Faults are highlighted in 3D seismic volumes with a supervised machine learning algo-
rithm. We label the faults using an automatic fault-picking method developed by Hale
(2013). We build feature vectors for the training and classification steps using two pop-
ular techniques in object recognition algorithms called Histograms of Oriented Gradi-
ents (HOG) and Scale Invariant Feature Transforms (SIFT). We train and classify the
seismic data using a Support Vector Machine classifier with Gaussian kernels. Using
both SIFT and HOG features together reduces the false positive rate, thus delivering
better fault images. Our approach is able to predict faults in both synthetic and field
data cubes quite well even when mislabeled data are used for training. We propose
many promising research directions to improve on our approach.
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1 INTRODUCTION

Interpretation tasks requiring human input are by nature slow,
expensive, and not repeatable. In exploration geophysics, the
interpretation of large seismic volumes (tens or hundreds of
gigabytes) remains one of the most labor-intensive task. Enor-
mous progress has been achieved to facilitate these tedious
steps. The automatic interpretation of 3D volumes based on
semblance analysis, phase unwrapping (Stark, 2004) or lo-
cal dip integration (Lomask et al., 2006) has revolutionized
the way interpretation can be done: using deterministic ap-
proaches and simple differential operators (Hale, 2013), codes
can reliably extract the information of interest in large vol-
umes. Contrary to humans, interpretation tasks done by com-
puters are fast, cheap and repeatable. In addition, whereas hu-
mans are particularly efficient at finding features in 2D only,
properly written softwares can work in any dimension.

In this paper, we propose a fault highlighting technique
that follows in the footsteps of a long tradition of automated
seismic interpretation methods. Marfurt et al. (1998) extract
seismic attributes using a semblance-based coherency algo-
rithm. This method looks at measuring the continuity of seis-
mic events to detect faults, for instance. Other measures of
continuity using variance of gradient magnitude are also pos-
sible. Other authors have looked at picking fault surfaces au-
tomatically using, for instance, ant tracking (Pedersen et al.,
2005).

Here, we take a statistical approach to the interpretation
of faults and use machine learning algorithms (MLAs) to iden-

tify them. Our goal is not to pick fault surfaces, but to provide
maps of possible fault locations (also known as fault imag-
ing or highlighting). Our method follows a supervised learning
concept. In a nutshell, for input, we have labeled seismic sec-
tions where faults are picked and unlabeled seismic sections
where faults are unknown. From the labeled seismic data, we
extract a set of features (that we define later) that will be used
to train the MLA to identify faults. Once the MLA is trained,
it can predict fault locations on the unlabeled data. A similar
approach is used by Araya-Polo et al. (2017) using features
estimated in the prestack domain and Huang et al. (2017) us-
ing features computed by the fault detection method of Hale
(2013). Both use neural networks for the classification step.

We first start our manuscript by presenting basic MLA
concepts and notations. For the fault imaging problem, we
show how to obtain our labeled data, how to extract features,
and how to use them to train the MLA. We illustrate our
method with 3D synthetic and field datasets. In both cases,
the MLA is able to identify faults very well.

2 CONCEPTS OF MACHINE LEARNING

In this section, we introduce basic notations and concepts
to better understand machine learning algorithms. Machine
learning can be applied to labeled, semi-labeled, or unlabeled
data. In the labeled case, all samples used for the training have
a quantitative or qualitative value. For instance, to the question
“what is on this photo”, we can assign to pictures qualitative
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Figure 1. Cost functions for (a) logistic regression and (b) SVM classifier.

values such as “truck”, “car”, “person”, “house”, etc... To the
question “what is the estimated selling price of my home”, we
can assign a quantitative value, like “$300,000”. Because la-
beling can be quite cumbersome or impossible due to the vol-
ume of data to process, we might label only few data points,
and use a semi-supervised approach, or label no data points at
all, and use an unsupervised approach. In the last case, clus-
tering techniques are quite popular to automatically label data
based on their proximity to centroids. These techniques suffer
from the curse of dimensionality, however, and other methods
based on convolutional neural-networks might be preferred.

For our fault highlighting method, we follow a supervised
learning approach. Our outcome can take only two qualitative
values, or classes: y = {fault,no fault}. For conve-
nience, we prefer working with values y = {1, 0}, where
y = 1 means a fault is present, and y = 0 means no fault
is present. Now from the seismic data, we can extract at each
point some features. These features can be, for instance, gra-
dients of the image, or semblances, or simply pixel values. A
data point can be a collection of pixels in a small neighbor-
hood, or patch. So at each point, we have a set of features that
we can arrange in a vector form. We write xij the value of the
feature i for data point j. For each point, we have a feature
vector xj and we want to find a function f(xj) such that

yj = f(xj) (1)

Putting all the feature vectors into one matrix X and all out-
comes in one column vector y we seek a function f(X) such
that

y = f(X) (2)

2.1 Linear regression model

In supervised learning, we know y and x and are seeking the
best function f(x), also called a predictor or hypothesis. One
of the simplest function we can think of is linear in its argu-
ments:

fr(xj) = θT xj (3)

where the unknown coefficients vector θ can be estimated
minimizing, for instance, the `2 norm of the prediction mis-
fit:

gr(θ) = ‖y− Xθ‖22. (4)

This MLA is merely linear regression: it makes strong assump-
tions about the relationship between the features (linear) and
works only for quantitative outcomes (y is a value). In ma-
chine learning jargon, linear regression is said to have a strong
bias. To stabilize the estimates of θ, a regularization term is
often added:

gr(θ) = ‖y− Xθ‖22 + λ‖θ‖22 (5)

which any geophysicist will recognize as Tikhonov regulariza-
tion. In MLA jargon, this is called ridge regression.

2.2 Logistic regression

To accommodate qualitative outcomes, a logistic function can
be added in the definition of f(xj):

fl(xj) =
1

1 + e−θT xj
(6)

and the outcome depends on whether fl(xj) is greater or less
than 0. {

yj = 1 if fl(xj) > 0
yj = 0 otherwise

(7)

Logistic regression also gives us the class probabilities. If the
outcome vector is y = {0, 1}, a slightly different cost function
invoking the log-likelihood is minimized (Figure 1(a)):

gl(θ) = −
∑
j

yj log(fl(xj))+(1−yj)log(1−fl(xj))+λ‖θ‖22

(8)
Note that when yj is equal to one, the second term in the sum
is zero, while the first term is zero when yj is equal to zero.
Logistic and linear regressions are some of the simplest algo-
rithms available for machine learning and are quite popular.
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Figure 2. Synthetic seismic data volumes with their interpreted faults. Conical faults are present in (b) and can be seen as round shapes in the depth
slices. Conjugate faults are present in (c) and can be seen as crosses in the inline/crossline slices. These three volumes are used for training only.
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Figure 3. Patching sequence for the outcome vector y. (a) Fault mask equal to 1 or 0 according to the presence of a fault, or not. (b) Patching
outcome for 2x2 cells. (c) The whole patch takes the value 1 if at least one cell is equal to 1, thus building the target vector y. (d) Reassembling the
patches in (c) back together produces a smooth version of the fault mask in (a). The numbers in (d) are then rescaled to fall within the original [0,1]
range.

The definitions in equations 3 and 6 can be extended to in-
clude non-linear relationships between features and/or power
functions of the features themselves. In practice, however,
other predictors are often preferred to so. Therefore, for fault
imaging where such non-linear effects might be present, we
use a support-vector machine (SVM) classifier instead. SVM
classifiers are computationally efficient and work very well for
non-linearly separable classes. We present a short description
of SVMs below.

2.3 Support vector machine classifier

Support vector machine (SVM) classifiers are very popular to
build an optimal hyperplane separating two classes (Hastie
et al., 2001). It can also discriminate between non-linearly
separable classes using so-called “kernels”, or similarity func-
tions. It is not the goal of this paper to describe the SVM clas-
sifier in details, but merely expose its interesting properties.

SVM classifier are called wide-margin classifiers, mean-
ing that they find the boundary between two classes that maxi-
mize the distance between feature vectors and decision bound-
aries. The vectors defining the position of the margin (and on
the margin) are called the support vectors.

The penalty, or loss, function associated with the SVM
classifier is very similar to the loss function of equation (8) for
logistic regression (Figure 1(b)) and takes the form

gs(θ) =
∑
j

yjH1(fs(xj))+(1−yj)H0(1−fs(xj))+λ‖θ‖22

(9)

where H1 and H0 are hinge loss functions defined as

H1(x) = max{0, 1− x}
H0(x) = max{0, 1 + x} (10)

With this definition, points within a class have a weight of zero
and do not contribute to the total loss. Only points on the mar-
gin or between the two margins count. In addition, the contri-
bution of these points is linear adding robustness to outliers.

To accommodate non-linearly separable classes, the no-
tion of kernels enters into the definition of the hypothesis fs
as follows (James et al., 2013)

fs(xj) = θTh(xj) (11)

and

h(xj) =

N∑
i=1

K(xj , xi) (12)

where K(x, x′) is called the kernel and should be a positive
semi-definite function and N is the number of training points.
Kernels help defining a metric relating two vectors. They
are also called similarity functions and create a local weight
around each point. In this paper, we use the radial/Gaussian
basis function defined as

K(x, x′) = exp(−‖x− x′‖2/2σ2). (13)

The classification is done by estimating fs in equation 11:{
yj = 1 if fs(xj) > 0
yj = 0 otherwise

(14)

Because of the shape of the cost function the SVM classifier,
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contrary to logistic regression, doesn’t provide classes proba-
bilities.

Training an SVM classifier requires parameters tuning.
The first parameter λ decides how flexible (or how biased) we
want the classifier to be. Having a very large λ value yields a
high bias/low variance classifier. A low value of λ yields the
opposite. This value is related to as how many misclassifica-
tions (or how wide the margin) are we allowing: a wide margin
(large λ) means many vectors can be on the wrong side of the
boundary decision. The second parameter comes from the ker-
nel definition. A discussion regarding the choice of kernel goes
beyond the scope of this paper but in our selected radial basis
function, we have to pick the variance σ2. There again, a very
wide Gaussian function means higher bias and lower variance,
while a small value of σ2 means the opposite.

In practice, we select the value of σ2 and λ by estimating
many SVM classifiers for a wide range of values of σ2 and λ
(e.g., [10−5, 105]) and select the values that yield the lowest
classification error. Statistically, we perform cross-validation
using a dataset called the validation set, different from the
training or test sets (see details below).

The SVM classifier is quite similar to logistic regression,
as exemplified in the similarities between the two loss func-
tions of Figures 1(b) and 1(a). SVM has a computational edge
over logistic regression because only observations within the
margins or at the margins matter. Note that kernels could also
be easily incorporated into the definitions of logistic regression
but without the same computational benefits.

It is interesting to see that a trend using neural networks
(NNs) is re-emerging for the interpretation of seismic data
(Araya-Polo et al., 2017; Huang et al., 2017). The fact that
NNs can be efficiently trained and optimized on hardware ac-
celerators such as GPUs seems to be the most compelling rea-
son why they are being used. However, NNs are also quite
expensive to train. We think that determining the right feature
sets for the training of the classifier is one of the most im-
portant element of MLAs and will benefit any classifier. Fur-
thermore, the right set of features might save us from using
very expensive classifiers such as NNs while still obtaining
satisfying prediction results. Therefore, we think that SVMs
with the appropriate kernels and parameterization combined
with meaningful features should yield accurate-enough fault
images. Testing other classifiers such as NNs will come at a
later time.

Having introduced the classifier, we now describe the fea-
ture sets used for the fault imaging problem.

3 FEATURES COMPUTATION FOR FAULT
DETECTION

The classifier is only one component of the whole MLA: it
helps us deciding whether a training point belongs to a class
or another. The next vital component of the MLA is the feature
set: what feature in the seismic image are we going to use to
make the classification easier?

The most simple feature is the seismic data itself, using
amplitude information only. Unfortunately, amplitude is a very

poor predictor of faults in seismic data and we need to find bet-
ter attributes to characterize them. Measures of continuity in
seismic data make better predictors, such as semblance. How-
ever here, we opted for two classes of features that are widely
used in computer vision for object recognition. One is called
Scale Invariant Feature Transform (SIFT) (Lowe, 1999), and
the other one is called Histogram of Oriented Gradients (HOG)
(Dalal and Triggs, 2005). These two methods yield sets of fea-
tures that can be used for classification. One of their biggest
shortcoming is that they work in 2D slices only: we know that
adding more dimensions to the fault detection problem yields
better results. One could expend these methods to extract 3D
attributes, however.

We are now going to briefly review the SIFT and HOG
algorithms.

3.1 Histogram of Oriented Gradients

The computation of HOG features is quite simple and compu-
tationally efficient (Dalal and Triggs, 2005). First, an image is
decomposed into cells and blocks. Cells are usually half the
size (in number of pixels) of blocks. Blocks are mostly used
for normalization purposes of the histograms. In general, but
not always, cells are 8x8 and blocks 16x16.

The first step consists in computing vertical ∇z and hor-
izontal ∇x gradients using centered 1D derivative operators
[−1, 0, 1] at each location in the image. From these gradients,
signed (between 0o−360o) and unsigned (between 0o−180o)
angles are computed (e.g. α = atan(∇z/∇x)).

Next, histograms of angles are computed for each cell.
In practice, nine orientations bins are usually estimated, where
each angle is linearly interpolated between neighboring bins.
The value of the bin depends on the gradient magnitude (∇2

x+
∇2

z)
0.5

Note that it would be possible to extend these compu-
tations to 3D by estimating histograms of oriented dips and
azimuths (Marfurt, 2006). For dips, we could compute

α = atan

(
(∇2

x +∇2
y)

1/2

∇z

)
, (15)

and for azimuth

ψ = atan2(∇x,∇y). (16)

Incorporating 3D attributes like these will help the classifica-
tion and should be explored further.

Once histograms have been estimated, a normalization
step follows. The normalization compensates for local varia-
tions in amplitudes due to illumination effects, noise, geology
etc... The normalization is done for each block (i.e., groups of
cells) where blocks are overlapped. For each block, a normal-
ization factor is computed as follows: if v is the unnormal-
ized vector of all histogram values for all cells belonging to a
block, compute the normalization factor

√
‖v‖22 + ε, where ε

is a constant to be chosen (with little impact on the classifica-
tion results). Each histogram within a block is then normalized
by this value.

This completes the computation of HOG features. Again,
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Figure 4. (a) A window extracted from a 2D slice after patching. (b) Illustration of SIFT features extracted from (a): 15 keypoints were identified
with different orientations. (c) Illustration of the HOG features extracted from (a): histograms are represented as rose diagrams.

the 3D extension should be easily doable and investigated fur-
ther. We now look at the Scale Invariant Feature Transform
(SIFT).

3.2 Scale Invariant Feature Transform

SIFT is another popular descriptor for image classification.
The goal of SIFT is to match features across different images.
The power of SIFT is that it can match features between im-
ages that are rotated, scaled (size-wise), illuminated or viewed
from different angles. The computation of SIFT descriptors is
more involved than for the HOG ones. We will focus on the
main steps only.

The first step of SIFT consists in finding keypoints in the
image. These keypoints are supposed to represent prominent
features in the image. Finding these keypoints requires many
steps. First, the image is transformed into a scale space: the im-
age is simultaneously blurred with different Gaussian kernels
and sub-sampled (halved between scales). Each scale is called
an “octave”. Therefore, after this first stage, SIFT creates many
duplicates of the image at different scales (i.e., resolution) and
with different smoothing functions. In other words from one
image, we end up with many cubes of different sizes where
each panel of a cube has a different blurring kernel applied
to it. Then, for each octave, two consecutive blurred images
are subtracted to create a Difference of Gaussians (DoG) scale
space. In the next step, local extrema (minima and maxima)
are detected by looping over all pixels for each scale within
an octave and comparing it with its closest 26 neighbors (a
pixel has 26 neighbors in a cube). The local extrema are then
quadratically interpolated so that we have a value of extrema
everywhere. It is recommended to have two such images of

extrema per octave, which means four DoG images per octave
and five blurring kernels. Extrema with low contrast responses
and close to the edges are discarded.

Once the keypoints are identified at different scales, an
orientation for each keypoint is estimated. To do this, a local
dip is estimated for all points surrounding a keypoint using
the same formula as the one used for the HOG method. Then
a histogram of all dip values is computed. The bin with the
highest value is assigned as the keypoint dip. Other keypoints
with the same location and scale are created for all bins within
80% of the highest value.

Finally, for each keypoint 16 blocks (4x4) are defined
with 16 pixels per block (4x4). Within each block, histograms
of gradient magnitudes and orientations are computed and
binned in an 8 bins histogram (similar to HOG). The keypoint
orientation is subtracted from all computed orientations within
surrounding blocks to preserve rotation independence. The bin
values are also clipped for normalization. Therefore, for each
keypoint, we have a vector of 128 descriptors (16 blocks times
8 bins). For classification, the descriptor of 128 elements is
used rather than its location.

Some of the major differences between the HOG and
SIFT descriptors are the scale invariance property built in the
SIFT, not present in HOG, and the selection of keypoints. For
each image, the number of keypoints will be different and
more steps are needed to use the SIFT descriptor with MLA.
We detail these steps below.

3.3 Clustering of SIFT features

From the description of the SIFT descriptor above, it is clear
that different images will have a different number of keypoints.
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This is problematic with MLAs because we want the size of
the feature vector to be the same for each data point.

To remedy the fact that the number of keypoints will be
different for different images, we first estimate the SIFT fea-
tures for each training image. For each image i, we end up
with a descriptor D128×Mi where Mi is the number of key-
points for image i and 128 is the number of orientation bins
(8) times the number of blocks (16) surrounding the keypoint.
Then, we pack all the descriptors for all images into one large
matrix D of size 128×

∑
iMi.

The matrix D contains all vectors of size 128 for all
training images. In the next step, we classify the vectors us-
ing K-means clustering, an unsupervised learning algorithm.
The number of centroids doesn’t need to be large. For the fault
detection problem, 20 centroids seem to be enough. Once the
centroids in the 128 dimensional space are found, we classify
all descriptors for all images into the 20 classes (using small-
est distance). If, for one image, l descriptors fall into one class,
the class takes the value l. We end up for each image with a
histogram of centroid values that has the same size for all im-
ages. If no keypoint is found in one image, then the histogram
is zero for all 20 bins. Another advantage of this process is that
it reduces the size of the feature vector considerably (only 20
elements in our case).

The workflow is now almost complete. We compute HOG
and SIFT features from seismic images. SIFT features are sim-
plified by clustering. The features are fed into an SVM clas-
sifier for training. The SVM classifier is then used for classi-
fication. Now, we present our workflow for the fault detection
problem first with 3D synthetic data, then with 3D field data.

4 3D STATISTICAL FAULT DETECTION WITH
SYNTHETIC DATA

The proper training, parameterization and execution of an
MLA requires validation, training, and test sets. These three
sets are mutually exclusives and don’t contain the same data
points. For seismic interpretation, we have enough data to
properly build these easily. The MLA is trained on the training
dataset and its parameterization is tested on the validation set.
For the SVM classifier with a Gaussian kernel, two parameters
are estimated with 5-fold cross-validation: σ (equation 13) and
λ (equation 9). Once the parameters are estimated, the training
is performed using the training set and the classifier is applied
to the test set.

4.1 Building the outcome vector

For the fault imaging problem, we first need to build
the required sets of labeled seismic data. For this, we
build many synthetic datasets with different fault geome-
tries (normal, conical, conjugate) and pick them using the
Mines Java Toolkit (https://github.com/dhale/jtk) and the
seismic image processing for geological faults software
(https://github.com/dhale/ipf). The fault picking part is ex-
plained in details in Hale (2013). For the training and valida-

tion sets, we use the volumes in Figures 2(a), 2(b) and 2(c). We
build the features vectors xj from the seismic volumes and the
outcome vector y from the fault picks. We now explain how
these features are extracted.

4.2 Building the feature vectors

The HOG and SIFT features need to be estimated on small
windows. Therefore, we decompose each cubes into 2D slices
along the crossline direction. Each slice is then decomposed
into overlapping windows of 8x6 pixels, with an overlap zone
of half the window length in both directions. We estimate the
HOG and SIFT features from these small windows. In this
parameterization, each patch (or window) becomes one train-
ing/validation point.

For the outcome vector, we follow the same idea. Figure
3 shows how the patching is done when the window size is
2x2 (for illustration purposes only). In Figure 3a, we have a
masking function equal to 1 or 0 when a fault is present or
not. In Figure 3b, patches of size 2x2 are formed. If a fault
is contained in a patch, we assign the value 1 to the whole
window, 0 otherwise (Figure 3c): this last step gives us the
outcome vector for each patch. Going backward, reassembling
the patches back to the original grid, we end up with Figure 3d:
due to the patch size and overlap, the fault location is smoothed
across the 2D slice as shown by the numbers in the cells (in
practice, the cells are then re-normalized so that the maximum
value is one).

From the patching of the 2D seismic slices, we extract the
individual windows and estimate the HOG and SIFT features.
Figure 4 illustrates these features. Figure 4a shows a patch of
size 8x6. From this patch SIFT features are extracted and dis-
played in Figure 4b. For this window, 15 keypoints are iden-
tified, corresponding to 15 circles. The size of the circle cor-
responds to the scale, or octave, the feature was identified in.
The bars correspond to the orientations picked at the keypoint
locations. Other windows will have different number of key-
points, orientations and circle sizes (i.e., scale). The clustering
algorithm presented above remedies this issue and provides
us with 20 features for all points. The HOG features are dis-
played in figure 4c. The histograms of oriented gradients are
represented as rose diagrams. When slopes are locally consis-
tent, the histogram is very narrow and highlights a fairly uni-
form direction. For each window (patch), 12 histograms are
estimated for a total of 768 features.

From 3D volumes of interpreted faults and seismic data,
we build 2D patches. Each patch makes up for one data point.
From the fault mask patches, we build the outcome vector y.
From the seismic data patches, we build the feature vectors xj

using HOG and SIFT algorithms. The final size of each feature
vector is 788 (768 from HOG, 20 from the clustering of the
SIFT vectors). With all our labeled data and features sets avail-
able, the training of the SVM classifier can start. In the next
sections, we show our training/prediction results with different
combinations of features (HOG vs. SIFT vs. HOG+SIFT).
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Figure 5. Test data with its interpreted faults. This dataset comprises conical, conjugate and normal faults. These data are not used for training or
cross-validation.

(a) (b)

Figure 6. Confusion matrices for (a) the training data and (b) the test data when the HOG features only are used. The error rate for the training
data is very low at 0.6% (bottom right blue corner). The error rate for the test data is higher, as expected, at 7.9%. Looking more closely at the
second row of (b), we notice that our classifier tends to overpredict faults, with an error rate of 20.8% (meaning that 20.8% of predicted faults are
not faults).

4.3 Fault interpretation with HOG features only

We first train and predict using the HOG features only. The
training is done using the seismic volumes in Figures 2(a), 2(b)
and 2(c). After patching, 600,000 windows are available for
validation and training. We extract randomly 40,000 patches
for training and 7,500 for validation (i.e. parameterization of
the SVM classifier with Gaussian kernels).

The training outcome is displayed in the confusion matrix
of Figure 6(a). The confusion matrix summarizes the train-
ing error by displaying the true/false positive/negative ratios.

The diagonal elements show the true positive and true nega-
tive rates. The off-diagonal elements show the false positive
and false negative rates (classification errors). The bottom row
and right-most column show a summary (in percentage) of the
classification errors/successes. The bottom right corner (blue)
shows in green the total success rate (sum of diagonal ele-
ments) and in red the total misclassification rate (sum of off-
diagonal elements). The training here is very good, with a very
low classification error. Only 245 patches with faults were mis-
classified as not having faults, while only 2 patches without
faults were misclassified as having faults. Such a low error
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(a) (b)

(c) (d)

Figure 7. (a) True fault locations after reassembling the patches (and thus smoother than in Figure 5) and (b) predicted faults locations for the test
data when HOG features are used only. The prediction highlights the faults accurately with some edge effects. (c) Predicted fault locations for the
test data when SIFT features are used only. The prediction is quite noisy and not as accurate as in Figure 7(b). (d) Predicted fault locations for the
test data when HOG and SIFT features are used. The prediction is cleaner than in Figure 7(b) with fewer misinterpreted faults on the edges of the
cube.

rate might indicate an overfitting of the training data which we
could remedy by adding more training data.

After training, we use the SVM classifier to identify faults
in a seismic volume not seen during training or validation (Fig-
ure 5). We use 200,000 windows for the test data. Figure 6(b)
shows the confusion matrix for the test data. The classification
error increases significantly, as expected. Looking at the sec-
ond row of the confusion matrix, we notice that 20% of the
interpreted faults are misclassified. Looking at the first row,
only 4.5% of the non-faults are misclassified. Therefore, our
classifier tends to over-predict faults.

Figure 7(a) shows the interpreted faults after reassem-
bling the patches of the faults images in Figure 5. The patch-
ing makes the faults wider, as already explained in Figure 3.

We consider Figure 7(a) to be the answer, or true prediction,
of the fault locations. Figure 7(b) displays the locations of
our predicted faults using the HOG features only. There is a
very good agreement between Figures 7(a) and 7(b). We no-
tice some edge effects that would be mitigated with a proper
taper function. Overall, the classifier was able to identify all
faults properly. Given that the feature vector is computed on
2D windows only, we think that better results would be possi-
ble by estimating features in 3D. Yet, the classifier performed
remarkably well.
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(a) (b)

Figure 8. Confusion matrices for (a) the training data and (b) the test data when the HOG and SIFT features are used. The error rate for the training
data has increased to 8.5% (bottom rights blue corner). Looking more closely at the second row of (b), we notice that our classifier tends to predict
fewer faults than in Figure 6(b) with a lower error rate of 18.1%. Predicting fewer faults translates into a cleaner image.

4.4 Fault interpretation with SIFT features only

Now we train our SVM classifier using the SIFT features only.
For this case, we show the classification results only in Fig-
ure 7(c). Clearly, the classification error is high. Although not
shown here, the confusion matrix indicates that 37% of faults
in Figure 7(c) are misclassified. Increasing the number of cen-
troids in the clustering part of the SIFT vectors didn’t change
this rate.

4.5 Fault interpretation with HOG and SIFT features

We are now combining HOG and SIFT features to train our
classifier. The classification result is shown in Figure 7(d) and
seems to indicate a better classification than when HOG fea-
tures are used only. Looking at the confusion matrices for the
training and test data in Figures 8(a) and 8(b), we notice that
the overall training error has increased to 8.5% compared to
the 0.6% seen Figure 6(a). However, the test error has re-
mained pretty constant. Using HOG and SIFT features has
reduced the variance of our classifier, decreased the misclassi-
fications of faults by 2%, and increased the misclassifications
of no-faults by 2% as well (precision has increased, recall has
decreased). In other words, our prediction has become more
conservative and has predicted fewer faults (42326 with HOG
only, 36908 with HOG and SIFT), thus resulting in a cleaner
image. Because of the overlap of the patches and the inher-
ent robustness coming with it (the information for one fault is
spread among many patches), missing more faults is beneficial
to the overall prediction.

Therefore, although counter-intuitive given the numbers
in the confusion matrices, combining HOG and SIFT features
for the fault imaging problem yields the best results. Better

classification results could be obtained if more training data
were added: we are only using 40,000 points out of 600,000 to
limit the computing cost of the training part.

In the next section, we use our approach to image faults
for a 3D field data example where many faults are present.

5 3D STATISTICAL FAULT DETECTION WITH
FIELD DATA

Field data are more challenging than synthetic data. Building
synthetic training data and applying them to field data might
not be the best approach because we might not capture the
complexity of faults in 3D with simple models. It seems a bet-
ter approach to train the classifier with field data examples as
well. Ideally, we would want to access lots of labeled seismic
cubes with different fault geometries, different noise levels,
different geological settings, etc... The classifier, similar to a
human interpreter, would learn from all these scenarios and
would improve its predictions.

For the field data example therein, we select a small 3D
seismic volume instead that we divide in three parts for vali-
dation, training and testing. We follow the same procedures as
with the synthetic data with two important differences. First,
the window size for each patch is now 8x12, as opposed to
8x6 for the synthetic dataset. Finally, a patch has a fault if at
least 16 cells in the patch (out of a possible 96) have the fault
marker set to one. By limiting the number of patches getting
the value y = 1, we make our classifier more robust to noise.
For the validation step, we use 30,000 points. For the training
step, we use 128,000 points. For the testing, we use 147,000
points.

Figure 11(a) shows the test data, not seen by the classi-
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fier, and Figure 11(b) displays the labeled faults using Hale’s
software (and after reassembling the outcome vector patches).
Using field data presents an interesting challenge, beyond the
noise problem mentioned above. The labeling of the faults
is indeed not accurate everywhere. Looking at Figure 11(b)
we see fault locations in the test data not picked by the au-
tomated fault detection software. It might also happens that
picked faults are not true faults. Therefore, the training of the
classifier is done with mislabeled data, where false positives
and false negatives are present.

We train the SVM with the HOG features only. The con-
fusion matrix for the training part is shown in Figure 9(a). The
overall training performance is excellent, with a near-perfect
prediction. This indicates an overfit of the training data which
often results in a poor performance of the classifier on test
data. This can be seen Figure 9(b) where the classification of
the test data is indeed less accurate (77%). The outcome vector
for the test data mapped back into the original dataset space is
shown in Figure 11(c). To increase the vertical and horizontal
continuity of faults in the crossline direction, we smooth the
fault map of Figure 11(c) and obtain Figure 11(e). It is pleas-
ing to see that the five major vertical faults between x=609 km
and x=613 km are identified by the classifier. Their lateral ex-
tent in the crossline direction is also clearly predicted by the
MLA.

Now, we train the SVM with both HOG and SIFT fea-
tures. Figure 10(a) shows the confusion matrix for the train-
ing part. Adding the SIFT features clearly affects the perfor-
mances of the training part, with a 86.5% success rate. This
is a well-known effect of adding more features to the train-
ing of any classifier. Similar to the synthetic experiment, Fig-
ure 10(b) shows that adding the SIFT features increases the
precision by 4%, which is significant: we are predicting less
faults but more accurately. Next, we map the predicted out-
comes back into the seismic volume in Figure 11(d). We no-
tice that the main faults are predicted correctly. We can also see
that we are missing some faults, comparing with Figure 11(b),
but that we are also picking real faults not visible in Figure
11(b). Therefore, our MLA does better in some areas, worse
in others. Finally, to improve the continuity of faults in the ver-
tical and crossline directions, we apply a small smoothing to
the predicted faults (Figure 11(f)). The smoothing makes for a
more realistic fault image. This process should be incorporated
somehow inside our training part.

6 DISCUSSION

Overall, our approach to predict fault locations using MLA
works. We label faults using an automated procedure devel-
oped by Hale. We build feature vectors using standard object
recognition methods such as HOG and SIFT. We use an SVM
classifier with Gaussian kernels. There are many avenues for
improvement, however.

From a MLA view point, we could improve our predic-
tion by incorporating some smoothness in the predictor di-
rectly and not in a post-processing step. For this, the method of

Wang et al. (2014) using spatially-temporally consistent ten-
sors could be used. In the geophysical world, this comes down
to adding a smoothness term to the fitting goal. Another im-
provement could come by integrating all our features (SIFT
and HOG) in a better way by adding a joint-structured sparsity
regularization term (Wang et al., 2013). In essence, we can
try to identify automatically the best features for all vectors.
Finally, we could use a semi-supervised approach where we
don’t label all faults but just a few: this would save time and
might handle the mislabeling issue with field data better.

From a feature computation view point, extending the
SIFT and HOG methods to 3D is the next natural step. While
the labelling is done in 3D, the features are estimated in 2D
planes only. By taking the SIFT and HOG features to higher
dimensions, better predictions would follow. In addition, we
could use other features such as semblance, dip, etc... for the
classification. However, it is quite remarkable that standard ob-
ject recognition techniques work so well with seismic data.

Additionaly, we need to include more training data to
have a classifier able to identify faults in many environments.
Increasing the size of the training data requires larger comput-
ing cappabilities and more efforts have to be made to optimize
the computation of both features and predictor. To this end,
being able to run these algorithms efficiently on GPUs will be
required.

Finally, the fault imaging problem is only one possible
application of MLAs with seismic data. Other features such
as channels or sequence boundaries can be included as well.
MLAs can also be very useful in the integration of many data
types where the volume and complex interaction between them
makes it hard to do with standard inversion approaches.

7 CONCLUSION

We highlight faults in 3D seismic volumes using a supervised
machine-learning approach. We label faults using an auto-
mated fault-picking method developed by Hale. We build fea-
ture vectors using two methods widely used in object recogni-
tion techniques called HOG and SIFT. We use a standard SVM
classifier with Gaussian kernels for our predictor. On both 3D
synthetic and field data examples, we show that a combination
of HOG and SIFT features yields better classification results:
the precision increases resulting in a lower false-positive rate.
We also demonstrate that a non-accurate labelling of the train-
ing data doesn’t necessarily prevent the MLA from predicting
faults: this is an important message with field data where mis-
labelling will occur. Finally, we prove that although not opti-
mal, features extracted in 2D can still be useful in 3D contexts.
However, we advocate to extend HOG and SIFT to 3D thus
yielding better classification results.
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