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ABSTRACT
Wavefield tomography can handle complex subsurface geology better than ray-based
techniques and, ultimately, provide a higher resolution. Here, we implement forward
and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical sym-
metry axis) media using a generalized pseudospectral operator based on a separable
approximation for the P-wave dispersion relation. This operator is employed to derive
the gradients of the differential semblance optimization (DSO) and modified image-
power objective functions. We also obtain the gradient expressions for a data-domain
objective function that can more easily incorporate borehole information necessary for
stable VTI velocity analysis. These gradients are similar to the ones obtained with a
space-time finite-difference (FD) scheme for a system of coupled wave equations but
the pseudospectral method is not hampered by the imprint of the shear-wave artifact.
Numerical examples also show the potential advantages of the modified image-power
objective function in estimating the anellipticity parameter η.

Key words: anisotropy, wave equation, data domain, image domain, tomography,
gradient

1 INTRODUCTION

Wavefield tomography can be implemented in the data or im-
age domain depending on the way of formulating the ob-
jective function. Data-domain methods enforce the similar-
ity between the predicted and observed seismic wavefields.
The image-domain approach requires an additional migration
step and relies, in accordance with the semblance principle,
on the consistency of migrated images for different experi-
ments (Al-Yahya, 1989; Sattlegger, 1975; Perrone and Sava,
2012). There are various modifications of image-domain to-
mography that employ different migration operators, imaging
conditions, and types of image gathers (e.g. Sava, 2014). The
objective function in either domain is typically minimized us-
ing gradient-based techniques, with the gradients obtained by
the adjoint-state method (ASM) (Tarantola, 1984; Tromp et al.,
2005; Plessix, 2006). Despite the difference in their objective
functions, both data- and image-domain methods use the same
wave equation and observed wavefields (Sava, 2014).

In this paper, we focus on wavefield extrapolation and
gradient derivation, which are common key steps for both
groups of methods. Our algorithm is designed for transversely
isotropic models with a vertical symmetry axis (VTI) and
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can be easily extended to tilted TI (TTI) media. Both VTI
and TTI models are widely used to improve the results of
time and depth imaging and reflection tomography. Opti-
mally, anisotropic inversion requires elastic wavefield extrap-
olation and benefits from including shear and mode-converted
waves. However, incorporating shear-wave information into
wavefield-based inversion remains challenging due to the high
cost and complexity of elastic modeling, imaging, and inver-
sion, as well as the limited availability of multicomponent
data. Therefore, anisotropic wavefield tomography is typically
implemented under the pseudoacoustic assumption originally
proposed by Alkhalifah (1998, 2000).

P-wave kinematics in VTI media is controlled by the ver-
tical velocity VP0 and Thomsen parameters ε and δ (Tsvankin
and Thomsen, 1994; Tsvankin, 2012). Alternative parameter
combinations for acoustic VTI media also involve the P-wave
horizontal velocity

[
Vhor = VP0

√
1 + 2ε

]
, the anellipticity pa-

rameter η = (ε−δ)/(1+2δ), and the normal-moveout (NMO)

velocity for a horizontal interface
[
Vnmo = VP0

√
1 + 2δ

]
. The

main challenge in anisotropic wavefield-based inversion is the
trade-off between model parameters, which strongly depends
on the chosen parameterization.

Acoustic modeling in TI media is based either on differ-
ential or intergral wave-equation solutions. The first group of
methods operates with coupled second-order partial differen-
tial equations (Duveneck et al., 2008; Fletcher et al., 2009;
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Fowler et al., 2010; Zhang et al., 2011). Because of the cou-
pling of P- and SV- modes, the differential methods propa-
gate shear-wave “artifacts” caused by setting the shear-wave
symmetry-direction velocity VS0 to zero (Alkhalifah, 1998,
2000; Grechka et al., 2004). These artifacts can contaminate
migrated images and hamper the acoustic inversion. The sim-
plest way to suppress the artifact is to place sources and re-
ceivers in an elliptic (ε = δ, η = 0) or purely isotropic medium
(Alkhalifah, 2000; Duveneck et al., 2008). However, this strat-
egy can be legitimately applied only in the case of the data-
domain waveform inversion of surface data when the physical
sources and receivers, as well as the adjoint sources, reside in
the near-surface layer, which can be made elliptic. More elabo-
rate methods for suppressing the artifact involve using a finite
VS0, wave-mode separation, or introducing a damping term
into the wave equation (Fletcher et al., 2009; Le and Levin,
2014; Suh, 2014; Fowler and King, 2011). Another issue with
the differential solutions is their numerical instability for mod-
els with η < 0.

Here, we focus on integral-solution methods, which are
designed to propagate only P-waves by producing decoupled
modes in the wavenumber domain (Etgen and Brandsberg-
Dahl, 2009; Crawley et al., 2010; Pestana and Stoffa, 2010;
Song and Alkhalifah, 2013; Fomel et al., 2013b; Sun et al.,
2016). A comprehensive review and classification of these
methods can be found in Du et al. (2014). Separable P-mode
dispersion-relation approximations for TI and orthorhombic
media are described in Pestana et al. (2011), Zhan et al. (2012),
Du et al. (2014), and Schleicher and Costa (2015).

Anisotropic waveform inversion has drawn considerable
attention in the literature, but it is usually implemented in the
data domain (Warner et al., 2013; Gholami et al., 2013; Plessix
et al., 2014; Wang and Sava, 2015; Kamath and Tsvankin,
2016). Compared to the data-domain inversion, image-domain
methods are less sensitive to the amplitude and shape of re-
flected arrivals. Whereas data-domain FWI is based on the di-
rect trace-by-trace comparison of the observed and simulated
data, image-domain inversion involves such smoothing oper-
ations as wavefield correlations and summation over the ex-
periments, as well as the summation over image extensions
for the adjoint-source computation. This property of image-
domain methods is highly beneficial for acoustic inversion that
cannot produce accurate reflection amplitudes.

The most common approach to image-domain tomogra-
phy involves evaluating the energy focusing in the extended
images (Rickett and Sava, 2002; Sava and Fomel, 2006; Sava
and Vasconcelos, 2011), which can be done with differential
semplance optimization (DSO) (Symes and Carazzone, 1991;
Shen and Symes, 2008) or image-power estimates (Chavent
and Jacewitz, 1995; Soubaras and Gratacos, 2007). The DSO
and image-power objective functions can be combined to use
both zero-lag and residual energy, which poses the challenge
of optimal balancing of the corresponding terms. Determina-
tion of optimal weights using such inversion-theory methods
as the L-curve (Nocedal and Wright, 2006) is not computa-
tionally affordable, so the balancing is commonly done empiri-
cally. Zhang and Shan (2013) propose a “partial” image-power

objective function that combines the DSO and image-power
criteria without a need to determine the optimal weights. Still,
robust parameter estimation for complicated anisotropic ve-
locity models may require using both the partial image-power
and DSO operators.

In general, P-wave reflection moveout must be supple-
mented with borehole (Wang and Tsvankin, 2013a,b) or other
information to resolve the VTI parameters. Y. Li et al. (2016a)
build an algorithm for image-domain tomography in acous-
tic VTI media that operates with angle-domain common-
image gathers (Sava and Fomel, 2003; Biondi, 2007; Sava and
Alkhalifah, 2013). They use prior rock-physics information
and structure-guided steering filters to precondition the gradi-
ent of the objective function in order to mitigate the dominant
contribution of the NMO velocity to the gradient. This tech-
nique, however, requires an accurate estimate of the covari-
ance between model parameters at each subsfurface location.
A realistic error in the covariance matrix may result in the sup-
presion of the updates in the anisotropy coefficients. Y. Li et al.
(2016b) test the algorithm on field data using the image-power
objective function, but their approach does not produce suffi-
cient updates in ε and δ. Weibull and Arntsen (2014) use elastic
P-wave extended images to estimate VP0, ε, and δ. However,
their imaging condition is based on a purely isotropic wave-
mode separation technique.

V. Li et al. (2016) analyze the defocusing in the extended
domain caused by errors in the VTI parameters and show that
the coefficient δ could be constrained only if it strongly varies
laterally. As is the case for conventional moveout analysis, the
sensitivity to the anellipticity parameter η in the image domain
is higher for dipping interfaces than for horizontal reflectors.

In this paper, we derive the gradients of the data- and
image-domain objective functions for acoustic VTI media us-
ing a wave-equation operator based on the separable P-mode
approximation. After reviewing parameterization and wave-
field extrapolation for acoustic VTI models, we discuss the
objective functions for wavefield tomography, with the main
focus on the image-domain approach. For data-domain tomog-
raphy, the analysis is restricted to the conventional objective
function that represents the `2-norm of the data-difference.
Then we obtain the corresponding gradients of the objective
function in both domains using the adjoint-state method. Fi-
nally, the gradients are computed and analyzed for typical VTI
models.

2 PARAMETERIZATION FOR ACOUSTIC VTI
MEDIA

In general, VTI acoustic wavefield tomography in either do-
main cannot simultaneously constrain all three relevant model
parameters due to the parameter trade-offs in surface P-wave
data. For data-domain inversion, an optimal parameter choice
depends on the directions in which the source and receiver
wavefields interact to produce a model update. Alkhalifah and
Plessix (2014) analyze the radiation (sensitivity) patterns for
horizontal reflectors in acoustic VTI media. They conclude
that if the inversion is driven primarily by waves traveling in
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near-horizontal directions (e.g., diving waves recorded at long
offsets), then the optimal parameter set includes Vhor, η, and
ε. For near-vertical propagation, better results can be obtained
with Vnmo, η, and δ.

For image-domain inversion, parameter trade-offs stem
from the properties of P-wave reflection moveout. Alkhali-
fah and Tsvankin (1995) demonstrate that P-wave reflection
moveout for a laterally homogeneous VTI medium above the
target horizon (which could be dipping or curved) is con-
trolled by the velocity Vnmo and parameter η. For layer-cake
VTI media, η contributes only to the nonhyperbolic (long-
offset) portion of the P-wave moveout. If the reflector is dip-
ping, however, η influences the NMO velocity and, therefore,
conventional-spread moveout. P-wave reflection traveltimes
are not sensitive to the coefficient δ, unless it varies laterally
above the target reflector (Alkhalifah et al., 2001; Tsvankin
and Grechka, 2011).

3 WAVEFIELD EXTRAPOLATION METHODS

Pseudoacoustic modeling operators are widely used in imag-
ing and tomography because of their simplicity and compu-
tational efficiency. Acoustic algorithms, however, cannot ac-
curately predict P-wave amplitudes and often have to rely on
the phase of recorded arrivals or use a “dummy” model pa-
rameter that absorbs unphysical model updates (e.g., Alkhal-
ifah and Plessix, 2014). As mentioned above, image-domain
algorithms are less sensitive to the amplitude and shape of the
reflection arrivals and may not require “dummy” variables.

3.1 Differential solution of the pseudoacoustic wave
equation

Here, we use the formulation proposed by Fletcher et al.
(2009) and Fowler et al. (2010). The 2D version of their equa-
tions for VTI media can be written as:

∂2up

∂t2
= V 2

hor(x, z)
∂2up

∂x2
+ V 2

P0(x, z)
∂2uq

∂z2
+ fp ,

∂2uq

∂t2
= V 2

nmo(x, z)
∂2up

∂x2
+ V 2

P0(x, z)
∂2uq

∂z2
+ fq ,

(1)

where up(x, t) and uq(x, t) are the solutions of the fourth-
order acoustic VTI equation (Alkhalifah, 2000), and fp and
fq are the source functions. Thus, this wave-equation opera-
tor propagates the two-component vector wavefield u. In the
matrix-vector notation equation 1 can be expressed as:

LFD

[
up

uq

]
+

[
fp

fq

]
= 0, (2)

where LFD is the following operator:

LFD =

[
V 2

hor ∂xx − ∂tt V 2
P0 ∂zz

V 2
nmo ∂xx V 2

P0 ∂zz − ∂tt

]
. (3)

For gradient computation, we use the system of equations ad-
joint to equation 1 (Wang and Sava, 2015).

3.2 Integral solution of the pseudoacoustic wave
equation

The integral solutions use the P-wave dispersion relation to ob-
tain the phase shift for extrapolating (time-stepping) the wave-
field (Du et al., 2014). The general integral wave-equation so-
lutions can be written as follows:

U(x, t±∆t) =

∫
Û(k, t)e±iφ(x,k,∆t)dk,

Û(k, t) =

(
1

2π

)n∫
U(x, t)e−ikxdx,

(4)

where ∆t is the time step, Û(k, t) is the spatial Fourier trans-
form of the wavefield U(x, t), k is the wave vector, n is the
dimension of the Fourier transform, and the phase function
φ = ∆t

√
A, where A is the right-hand side of a dispersion

relation (e.g., see equation 5 below).

Application of this approach to anisotropic wave equa-
tions may involve the generalized pseudospectral methods (Du
et al., 2014), which require approximate dispersion relations
with separable wavenumber and model-parameter terms. In
other words, the contribution of the spatial wavefield varia-
tion should be decoupled from the spatial variation of medium
parameters (Du et al., 2014). In the pseudoacoustic approxi-
mation, the 2D P-wave dispersion relation for VTI media can
be written as (Alkhalifah, 1998):

ω2 =
1

2

[
(1 + 2ε)V 2

P0 k
2
x + V 2

P0 k
2
z

]
{

1 +

√√√√1− 8 (ε− δ) k2
x k2

z[
(1 + 2ε) k2

x + k2
z

]2
}
,

(5)

where kx and kz are the horizontal and vertical wavenumbers.
However, equation 5 is not suitable for pseudospectral meth-
ods because it contains the radical term. Assuming that the
term containing ε − δ under the radical is small, a Taylor se-
ries expansion in that term yields:

ω2 = (1+2ε)V 2
P0k

2
x+V 2

P0k
2
z−2(ε−δ)VP0

k2
x k

2
z

k2
z + Fk2

x

, (6)

where F = 1 + 2ε. Pestana et al. (2011) set F to a con-
stant to achieve separable formulas suitable for pseudospec-
tral methods. Physically, the Taylor series expansion produces
a weak-anellipticity approximation for the dispersion relation
(the medium is elliptic if ε = δ).

A more accurate dispersion relation can be obtained from
Padé’s expansion in the same term that contains ε− δ in equa-
tion 5. With the first-order Padé expansion, the separable dis-
persion relation takes the form (Schleicher and Costa, 2015):

ω2 = (1 + 2ε)V 2
P0 k

2
x + V 2

P0 k
2
z − 2(ε− δ)V 2

P0
k2
xk

2
z

k2
x + k2

z

×
[
1− 2ε

k2
x

k2
x + k2

z

+ 2(ε− δ) k2
xk

2
z

(k2
x + k2

z)2

]
.

(7)
Here, the Padé coefficients α and β in equation 17 of Schle-
icher and Costa (2015) are set to 1/2 and 1/4 respectively,
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and their coefficient f is set to unity according to the acous-
tic assumption. Equation 7 can be referred to as the “separa-
ble strong-anellipticity approximation,” which is suitable for
implementation with pseudospectral methods. Therefore, the
integral wave-equation operator can be written as:

LINT =− ∂2

∂t2
− (1 + 2ε)V 2

P0 k
2
x − V 2

P0 k
2
z

+ 2(ε− δ)V 2
P0

k2
xk

2
z

k2
x + k2

z

×
[
1− 2ε

k2
x

k2
x + k2

z

+ 2(ε− δ) k2
xk

2
z

(k2
x + k2

z)2

]
.

(8)

At each time step all terms containing the wavenumbers are
computed separately as follows:

(i) Compute the spatial Fourier transform Û(k, t).
(ii) Multiply Û(k, t) by the corresponding wavenumbers

(e.g., k2
x).

(iii) Compute the inverse Fourier transform of that product
[e.g., k2

x Û(k, t)].
(iv) Multiply the result by the corresponding medium pa-

rameters [e.g., (1 + 2ε)V 2
P0].

An extension to TTI media can be obtained by locally applying
the appropriate rotation matrix to the wavenumbers because
equation 7 remains valid for k̂x and k̂z in the rotated coordi-
nates. However, the rotation matrix makes the equations more
complex, and the resulting wavefield simulation involves ad-
ditional Fourier transforms (Zhan et al., 2012).

4 OBJECTIVE FUNCTIONS FOR WAVEFIELD
TOMOGRAPHY

4.1 Data domain

Data-domain methods enforce the similarity between the ob-
served and modeled data. The objective function is typically
defined as the `2-norm data difference:

J =
1

2

∥∥∥K(r) u− d obs
∥∥∥2

2
, (9)

where the action of the operator K(r) on the modeled wave-
field u produces the predicted data, and d obs is the observed
data for fixed receiver coordinates and time. However, because
acoustic wavefield extrapolation cannot adequately predict P-
wave amplitudes, application of equation 7 to field data might
be problematic. Acoustic data-domain tomography is often
implemented with the objective functions that rely mostly on
phase information and, therefore, are less prone to get trapped
in local minima (Luo and Schuster, 1991; Alkhalifah, 2015;
Choi and Alkhalifah, 2015; Dı́az and Sava, 2015). Alterna-
tively, one could use a “dummy” model parameter to absorb
the model updates caused by unphysical amplitudes produced
by acoustic equations.

4.2 Image domain

Image-domain tomography uses migrated reflection data as
the input for the inversion with the goal of updating the
background velocty model (note that parameter updates are
smeared along the reflection wavepaths). Our treatment is re-
stricted to the residual energy minimization in the so-called
extended domain. Extended images are produced by retaining
correlation lags between the source and receiver wavefields in
the output of wave-equation migration. The general imaging
condition can be formulated as follows (Sava and Vasconce-
los, 2011):

I (x,λ, τ) =
∑
e,t

Ws (x− λ, t− τ)Wr (x + λ, t+ τ) ,

(10)

where I(x,λ, τ) is the extended image, Ws and Wr denote
the source and receiver wavefields, respectively, λ is the space
lag, τ is the time lag, and e indicates summation over exper-
iments. To reduce computational cost, one can compute only
extended common-image-gathers (CIG), which are space-lag
or time-lag extensions at fixed horizontal coordinates (Rickett
and Sava, 2002; Sava and Fomel, 2006), or common-image-
point (CIP) gathers, which represent multiple extensions com-
puted at sparse points in the image space (Sava and Vasconce-
los, 2009). Residual energy at nonzero lags can be used to up-
date the migration velocity model and is most commonly mea-
sured with differential semblance optimization (DSO) (Symes
and Carazzone, 1991; Shen and Symes, 2008). The DSO ob-
jective function for a horizontal space-lag extended image I
has the form:

JDSO =
1

2
‖λx I(x, z, λx)‖22, (11)

where the horizontal lag λx plays the role of the penalty opera-
tor. Another commonly used (image-power) objective function
measures zero-lag energy:

JST = −1

2
‖I(x, z, λx = 0)‖2`2 . (12)

Zhang and Shan (2013) propose a “partial” image-power ob-
jective function that combines the criteria in equations 11 and
12:

JPST = −1

2
‖H(λx) I(x, z, λx)‖2`2 , (13)

where H is a Gaussian operator centered at zero lag.

5 GRADIENT COMPUTATION USING THE
ADJOINT-STATE METHOD

The adjoint-state method (Tarantola, 1984; Tromp et al., 2005;
Plessix, 2006) is designed to efficiently evaluate the gradient
of the objective function with respect to the model parameters.
For seismic wavefield tomography, general gradient expres-
sions for acoustic wavefields written in matrix-vector notation
can be found in Sava (2014). In addition to the objective func-
tion, application of the adjoint-state method involves state and
adjoint equations. Minimization of the objective function J is
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subject to the constraints Fs and Fr:[
Fs
Fr

]
=

[
L 0

0 L†

] [
us
ur

]
−
[
ds
dr

]
= 0, (14)

where L and L† are the forward and adjoint wave-equation
operators, respectively, ds is the source function, dr is the ob-
served data, and us and ur are the source and receiver wave-
fields, respectively. The zero matrix 0 has the same dimensions
as the wave-equation matrix (operator) L. These constraints
indicate that the wavefields us and ur used in the minimiza-
tion problem should be solutions of the wave equation:[

L 0

0 L†

] [
us
ur

]
=

[
ds
dr

]
. (15)

The method of Lagrange multipliers can be used to formulate
the minimization as an unconstrained problem:

H = J −
[
FT
s FT

r

] [as
ar

]
; (16)

where H is Lagrangian and T denotes a transpose. The La-
grange multipliers as and ar are referred to as the “adjoint-
state variables,” which are found from the following adjoint
equations that involve the source terms gs and gr:[

L† 0
0 L

] [
as
ar

]
=

[
gs
gr

]
, (17)

The magnitude and spatial distribution of gs and gr are ob-
tained from the derivatives of the objective function:

[
gs
gr

]
=


∂J
∂us
∂J
∂ur

 . (18)

Finally, the gradient of the augmented functionH with respect
to the vector m of the model parameters is found as

∂H
∂m

=
∂J
∂m

+
∑
e

[(
∂Fs
∂m

)T(
∂Fr
∂m

)T ] [as
ar

]
(19)

Additionally, the summation on the right-hand side is per-
formed not just over experiments, but also over time, which
is equivalent to the zero time-lag correlation (Sava, 2014):

∂H
∂m

=
∂J
∂m

+
∑
e,τ

δ(τ)

(
∂Fs
∂m

? as +
∂Fr
∂m

? ar

)
, (20)

where τ is the correlation lag, δ(τ) is the Dirac delta function,
and ‘?’ denotes cross-correlation. Overall, application of the
adjoint-state method involves computing the following quan-
tities:

(i) The state variables us and ur by solving the state equa-
tions 15.

(ii) The adjoint sources gs and gr that depend on the cho-
sen objective function in equation 18.

(iii) The adjoint-state variables as and ar by solving the
adjoint equations 17.

(iv) The gradient of the objective function, which depends
on the wave-equation operator and chosen parameterization.

Here, we apply the adjoint-state method to the pseudoacoustic
operators LFD and LINT discussed above and obtain gradient
expressions for the objective functions in equations 9, 11, and
13.

5.1 Differential-solution operator

For VTI media, the forward (state) wave-equation operator L
is defined as (equation 3):

L =

[
L11 L12

L21 L22

]
=

[
V 2

hor∂xx − ∂tt V 2
P0∂zz

V 2
nmo∂xx V 2

P0∂zz − ∂tt

]
.

(21)
As shown by Wang and Sava (2015), the corresponding adjoint
operator LT is:

LT =

[
LT11 LT21

LT12 LT22

]
=

[
∂xxV

2
hor − ∂tt ∂xxV

2
nmo

∂zzV
2
P0 ∂zzV

2
P0 − ∂tt

]
.

(22)

5.1.1 Data domain

For the data-domain objective function (equation 9), the gra-
dients can be found in Wang and Sava (2015). For 2D models,
they define the data residual as Kr(u

p+uq)−dobs, the model
parameters as m = {V 2

P0, V
2
nmo, V

2
hor}, and obtain the follow-

ing expressions:

∂J
∂m

=


∂J
∂V 2

P0
∂J
∂V 2

nmo
∂J
∂V 2

hor

 =
∑
e,τ

δ(τ)


b1

b2

b3

 ,
b1 = ∂zzu

q ? (ap + aq) ,

b2 = ∂xxu
p ? aq ,

b3 = ∂xxu
p ? ap .

(23)

where ap and aq are the components of the adjoint wavefield.
Application of the chain rule yields the gradient expressions
for the vector m̂ = {Vhor, η, ε}:

∂J
∂m̂

=


∂J
∂ε
∂J
∂η
∂J
∂Vhor

 =
∑
e,τ

δ(τ)

×


−2V 2

hor

(1 + 2ε)2
0 0

0
−2V 2

hor

(1 + 2η)2
0

0 0 2Vhor



f1

f2

f3

 ,
f1 = ∂zzu

q ? (ap + aq) ,

f2 = ∂xxu
p ? aq ,

f3 = ∂xxu
p ? ap +

∂xxu
p

1 + 2η
? aq +

∂zzu
q

1 + 2ε
? (ap + aq) .

(24)
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5.1.2 Image domain

We define the space-lag common-image gather through the
sum of the p and q components of the source and receiver
wavefields:

I(x,λ) =
∑
e,t

Ws(e,x− λ, t)Wr(e,x + λ, t), (25)

where

Wi(e,x, t) = upi (e,x, t) + uqi (e,x, t), i = s, r . (26)

As a result, for the objective function in equation 11, equa-
tions 18 for the adjoint sources take the following form:[

gps
gqs

]
=
∑
λx

λ2
x

[
I(x+ λx, λx)Wr(x+ 2λx, t)

I(x+ λx, λx)Wr(x+ 2λx, t)

]
,

[
gpr
gqr

]
=
∑
λx

λ2
x

[
I(x− λx, λx)Ws(x− 2λx, t)

I(x− λx, λx)Ws(x− 2λx, t)

]
.

(27)

After the adjoint wavefields are computed, the source- and
receiver-side gradients with respect to the vector m =
{Vnmo, η, δ} are found as:

[
∂J
∂m

]
i

=


∂J
∂δ
∂J
∂Vnmo
∂J
∂η


i

=
∑
e,τ

δ(τ)

×


−2V 2

nmo

(1 + 2δ)2
0 0

0 2Vnmo 0

0 0 2V 2
nmo



f1

f2

f3

 ,
f1 = ∂zzu

q
i ? (api + aqi ) ,

f2 = (1 + 2η)∂xxu
p
i ? a

p
i + ∂xxu

p
i ? a

q
i

+
∂zzu

q
i

1 + 2δ
? (api + aqi ) ,

f3 = ∂xxu
p
i ? a

p
i , i = s, r ,

(28)

where i denotes either the source or receiver side.

5.2 Integral-solution operator

For most TI models (with the exception of uncommonly strong
anisotropy), sufficient accuracy can be provided by the three
leading terms of the separable dispersion relation in equa-
tion 7, which simplifies the gradient expressions. However, we
truncate equation 7 only for deriving the gradient expressions
but not for wavefield extrapolation. For VTI media, the for-
ward (state) wave-equation operator L can be defined as

LINT =− ∂2

∂t2
− V 2

hor k
2
x −

V 2
hor

1 + 2ε
k2
z

+ 2η
V 2

hor

1 + 2η

k2
xk

2
z

k2
x + k2

z

,

(29)

or, equivalently,

LINT =− ∂2

∂t2
− V 2

nmo k
2
x −

V 2
nmo

1 + 2δ
k2
z

− 2η V 2
nmo

k4
x

k2
x + k2

z

.

(30)

The corresponding adjoint operator L† is:

L†INT =− ∂2

∂t2
− k2

x V
2
hor − k2

z
V 2

hor

1 + 2ε

+
2 k2

x k
2
z

k2
x + k2

z

η
V 2

hor

1 + 2η
,

(31)

or

L†INT =− ∂2

∂t2
− k2

x V
2
nmo − k2

z
V 2

nmo

1 + 2δ

− 2 k4
x

k2
x + k2

z

η V 2
nmo.

(32)

5.2.1 Data domain

Below, we obtain the gradient expressions for the data-domain
objective function in equation 9. The data residual is defined
as Kru− d obs. Therefore, equation 18 for the adjoint sources
gs and gr becomes:[

gs
gr

]
=

[
+KT

r (Kru− dobs)

−KT
r (Kru− dobs)

]
. (33)

For data-domain methods, only the adjoint source wavefield a
is relevant (Sava, 2014), and the gradient with respect to the
model parameter m̂ = {Vhor, η, ε} is given by the following
expression:

∂J
∂m̂

=


∂J
∂ε
∂J
∂η
∂J
∂Vhor

 = −
∑
e,τ

δ(τ)

×


−2V 2

hor

(1 + 2ε)2
0 0

0
−2V 2

hor

(1 + 2η)2
0

0 0 2Vhor



f1

f2

f3

 ,
f1 = k2

zu ? a ,

f2 =
k2
xk

2
z

k2
x + k2

z

u ? a ,

f3 = k2
xu ? a+

k2
zu

1 + 2ε
? a − 2η

1 + 2η

k2
xk

2
z

k2
x + k2

z

u ? a .

(34)
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5.2.2 Image domain

The image residual can be defined as:

λ I(x,λ) = λ

(∑
e,t

us(e,x− λ, t) ur(e,x + λ, t)

)
.

(35)

Hence, for the objective function in equation 11, equation 18
for the adjoint sources becomes:[

gs
gr

]
=
∑
λx

λ2
x

[
I(x+ λx, λx) ur(x+ 2λx, t)

I(x− λx, λx) us(x− 2λx, t)

]
. (36)

Similarly, for the partial image-power objective function in
equation 13, equation 18 for the adjoint sources becomes:[
gs
gr

]
= −

∑
λx

H(λx)2

[
I(x+ λx, λx) ur(x+ 2λx, t)

I(x− λx, λx) us(x− 2λx, t)

]
.

(37)
Then the source- and receicer-side gradients with respect to
the model vector m = {Vnmo, η, δ} are given by:

[
∂J
∂m

]
i

=


∂J
∂δ
∂J
∂Vnmo
∂J
∂η


i

= −
∑
e,τ

δ(τ)

×


−2V 2

nmo

(1 + 2δ)2
0 0

0 2Vnmo 0

0 0 2V 2
nmo



f1

f2

f3

 ,
f1 = k2

zui ? ai ,

f2 = k2
xui ? ai +

k2
z

1 + 2δ
ui ? ai + 2η

k4
x

k2
x + k2

z

ui ? ai ,

f3 =
k4
x

k2
x + k2

z

ui ? ai , i = s, r .

(38)

6 SYNTHETIC EXAMPLES

Below, we test the gradient expressions derived above on sev-
eral VTI models. The medium parameters are specified on a
rectangular grid, and the density is assumed to be constant.
For forward and adjoint wavefield extrapolation, we use both
the differential (operators LFD and L†FD) and integral methods
(operators LINT and L†INT) described above. The gradients ob-
tained with the integral operator are compared with the ones
for the differential operator alrorithm (equations 21 and 22).

6.1 Model 1

First, we compute the gradients in the data domain for a model
that includes a constant Vhor-field and Gaussian anomalies in
the parameters η (reaching 0.2 at the center; the background η
= 0.05) and ε (reaching 0.15; the background ε = 0) (Figure 1).

Only transmitted waves are employed to generate parameter
updates. The source function is a Ricker wavelet with a central
frequency of 2 Hz. Using the actual η-field, we compute the
gradients for understated and overstated peak values of the ε-
anomaly (ε = 0 and 0.3; the background ε = 0 is correct). Note
that for the peak frequency of the source signal (2 Hz) and the
model size, the time shifts caused by errors in ε do not exceed
half a cycle.

For the chosen parameterization (Vhor, η, ε), the coeffi-
cient ε should be constrained for near-vertical propagation, if
Vhor has been estimated from long-offset data (Alkhalifah and
Plessix, 2014). We compute the gradients using the vertical
(“borehole”) receiver array shown in Figure 1d. In general, P-
wave reflection moveout must be supplemented with borehole
(Wang and Tsvankin, 2013a) or other information to resolve
the VTI parameters. The gradients generated by both opera-
tors are similar and, as expected, change sign depending on the
sign of the ε-error (Figure 2). Because the background η-field
is positive, the differential extrapolator produces a pronounced
shear-wave artifact. In the data domain, the gradient for the
actual ε-field goes to zero. However, the data-difference esti-
mate may be questionable for field-data applications because
the acoustic approximation does not accurately model reflec-
tion amplitudes.

6.2 Model 2

Next, we compute the η-gradient in the image domain using
reflection data. The model includes a horizontal interface 8
km long beneath a homogeneous VTI layer with Vnmo = 2
km/s, η = δ = 0.15, and a thickness of 2 km. The near-surface
layer, which is 0.2 km thick, is assumed to be elliptic (ε =
δ) to suppress the shear-wave artifact produced by the differ-
ential extrapolator. We generate horizontal-space-lag extended
images (Figure 3) and obtain the η-gradients for understated
and overstated values of η. The η-errors induce residual en-
ergy in extended images (Figure 3) that has a linear (“V”-
like) shape, which is typical for near-horizontal interfaces (V.
Li et al., 2016; Sava and Alkhalifah, 2012). For both extrap-
olators, the extended images computed with the understated
and even actual η-fields also contain considerable residual en-
ergy that spreads from the image point up to the surface. These
kinematic artifacts, caused by the aperture truncation, may in-
troduce bias in the image-domain objective function and lead
to false model updates.

The DSO gradients computed using surface acquisition
geometry and the entire extended image are shown in Fig-
ure 4. With either extrapolation operator, the gradient of the
DSO objective function (equation 11) for the understated η-
field is strongly influenced by the kinematic artifacts in the
extended image. The contribution of the artifact is even larger
than that of the residual induced by the η-error because the ar-
tifact is located closer to the physical sources and receivers.
For this model, the partial image-power objective function
(equation 13) significantly reduces the artifact (Figure 5). Nev-
ertheless, robust anisotropic inversion may require additional
suppression of kinematic artifacts by proper accounting for il-
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lumination in the imaging or DSO operators (Lameloise et al.,
2015; Hou and Symes, 2015; Yang and Sava, 2015).

6.3 Model 3

In this test, we compare the sensitivity of the DSO and par-
tial image-power estimates to errors in the background Vnmo-
field. The actual Vnmo field consists of the constant back-
ground equal to 2 km/s and perturbations located at 1, 2, and
3 km depth. The anisotropy coefficients η and δ are taken
constant (equal to 0.15 and 0.1, respectively) throughout the
model. We compute the DSO and partial image-power objec-
tive functions for several models with different background
Vnmo-values ranging from 1.8 to 2.2 km/s. Figure 7 shows
the space-lag CIGs for the understated, actual, and overstated
background Vnmo-values. Similarly to model 2, the gathers in-
clude defocused energy due to both velocity errors and the
aperture-truncation effect.

Figures 8 and 9 show the same gathers after applying the
DSO and partial-power operators. The DSO operator (Figure
8) is biased towards understated background models, whereas
the partial image-power focuses most energy for the actual
backround model. Figure 10 shows the difference in the behav-
ior of the DSO and partial image-power objective functions.
The DSO objective function amplifies the aperture-truncation
artifacts and is not sensitive to the negative velocity errors
for this model. In contrast, the partial image-power objective
function is symmetric with the minimum at the actual back-
ground Vnmo-value. However, the difference between the DSO
and partial image-power objective functions needs to be stud-
ied further for more complicated models. The relative perfor-
mance of these two functions is likely to depend on such fac-
tors as the accuracy of the initial model and the type of input
data.

6.4 Image-domain tomography

In the last test, we apply the partial image-power gradients
discussed above to perform image-domain tomography for
model 3. The data are generated by 41 evenly distributed shots
with the spacing equal to 0.2 km. The initial model is ellip-
tic (η = 0) with the NMO velocity equal to 1.8 km/s (10%
lower than the actual value). We assume that the parameter δ is
known because it does not vary laterally, and, therefore, cannot
be constrained by P-wave reflection data (V. Li et al., 2016).
The model update is computed with the following equation:

mk+1 = mk + αk ∇Jk, (39)

where αk is the steplength and∇Jk is the gradient of the par-
tial image-power objective function. Given the simplicity of
the model, we use the steepest-descent method (Nocedal and
Wright, 2006), which relies only on the inversion gradient at
the current iteration k.

Extended images and the inversion gradients are tapered
in the top part of the section to reduce the influence of the
aperture-truncation artifacts. Figure 11a,b shows the gradients
for the parameters Vnmo and η computed for the initial model.

We also apply Gaussian smoothing to the gradients, as shown
in Figure 11 (c,d). After three iterations, the updated parame-
ters Vnmo ≈ 2.05 and η ≈ 0.17 (Figure 12) are close to the
actual values (2 km/s and 0.15, respectively).

7 CONCLUSIONS

Wavefield extrapolation and gradient computation are key
steps of wave-equation-based inversion algorithms. We im-
plemented forward and adjoint integral extrapolation opera-
tors for acoustic VTI media based on a separable dispersion-
relation approximation and derived the corresponding gradient
expressions. This work is mostly focused on image-domain
wavefield tomography, which is less susceptible to amplitude
distortions produced by acoustic algorithms. However, be-
cause estimation of all three relevant VTI parameters (e.g.,
VP0, ε, and δ) is seldom feasible using only P-wave reflec-
tion moveout, we also derived data-domain gradients, which
are more suitable for incorporating borehole information.

The gradients of the image- and data-domain objective
functions were computed for several VTI models and differ-
ent acquisition geometries. The similarity between the gradi-
ents obtained with the integral and differential operators val-
idates our analytic results. However, the gradients computed
with these two operators do not exhibit the same spatial distri-
bution, which can be explained by the difference in amplitude
variation along the simulated wavefronts. This difference be-
comes larger with an increase in the parameter η. For a model
where the sources and receivers were placed in a layer with
η > 0, the gradients computed with the pseudospectral algo-
rithm do not contain the imprint of the shear-wave artifact that
contaminates the FD results.

The space-lag common-image gathers (CIGs) reveal
illumination-related issues with the DSO objective function
applied to cross-correlation extended images. Kinematic ar-
tifacts caused by insufficient illumination substantially distort
the gradients and should be suppressed prior to updating the
model. The partial image-power objective function may help
reduce the false updates caused by these artifacts. However,
the DSO and partial image-power objective functions need to
be compared for more realistic, structurally complex models.
Ongoing work involves implementing the imaging and inver-
sion steps of anisotropic image-domain tomography and an ex-
tension of the algorithm to tilted TI media.
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(a) (b)

(c) (d)

Figure 1. VTI model with Gaussian anomalies in the parameters η and ε: (a) Vhor, (b) η, and (c) ε (model 1). (d) Source (red dot)-receiver (green
dots) geometry.
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(a) (b)

(c) (d)

Figure 2. Gradients for model 1 computed using the (a,b) integral and (c,d) differential extrapolators with different peak values of ε: (a,c) ε = 0 and
(b,d) ε = 0.3 (the actual peak ε = 0.15). The differential operator produces a strong artifact at x = 2 km.
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(a) (b) (c)

Figure 3. Space-lag CIGs for a horizontal VTI layer (model 2) computed in the middle of the model (x = 4 km) using the integral extrapolator with
(a) η = 0, (b) η = 0.15 (actual value), and (c) η = 0.3.

(a) (b)

(c) (d)

Figure 4. Gradients of the DSO objective function (equation 11) for model 2 computed using the (a,b) integral and (c,d) differential extrapolators
for (a,c) η = 0 and (b,d) η = 0.3.
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(a) (b)

(c) (d)

Figure 5. Gradients of the partial image-power function (equation 13) for model 2 computed using the (a,b) integral and (c,d) differential extrapo-
lators for (a,c) η = 0 and (b,d) η = 0.3.

(a) (b)

Figure 6. (a) VTI model with perturbations in the Vnmo-field (model 3); the anisotropy coefficients η and δ are constant throughout the model. (b)
Shot gather for the source located in the middle of the model.
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(a) (b) (c)

Figure 7. Space-lag CIGs for model 3 at x = 4 km using the integral extrapolator with (a) Vnmo = 1.8, (b) Vnmo = 2.0 (actual value), and (c) Vnmo

= 2.2 km/s.

(a) (b) (c)

Figure 8. Space-lag CIGs for model 3 after applying the DSO operator. The gathers computed with the actual (plot b) and understated (plot a) value
of Vnmo contain comparable residual energy.
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(a) (b) (c)

Figure 9. Space-lag CIGs for model 3 after applying the partial image-power operator. The gather computed with the actual model (plot b) features
strong energy focusing at zero lag.

(a) (b)

Figure 10. Dependence of the objective functions on the background Vnmo-field: (a) DSO and (b) partial image-power. The actual background
Vnmo = 2.0 km/s.
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(a) (b)

(c) (d)

Figure 11. Gradients of the partial image-power objective function for model 3 (Figure 6): (a,c) Vnmo and (b,d) η. The gradients are computed
before (a,b) and after (c,d) smoothing for the initial elliptic model (ε = δ).

(a) (b)

Figure 12. Estimated parameters Vnmo and η for model 3 after three iterations of image-domain tomography with the partial image-power objective
function.


