Elastic least-squares reverse-time migration using the energy norm

Daniel Rocha & Paul Sava
Center for Wave Phenomena, Colorado School of Mines

ABSTRACT

Incorporating anisotropy and elasticity into least-squares migration (LSM) is an important step towards more accurate amplitudes in seismic imaging. In this context, we derive linearized modeling and migration operators based on the energy norm for elastic wavefields in arbitrary anisotropic media. We use these operators to perform anisotropic least-squares reverse time migration (LSRTM) and generate scalar images that represent subsurface reflectivity and correctly predict observed data without costly decomposition of wave modes. Imaging operators based on the energy norm have no polarity reversal at normal incidence and remove backscattering artifacts caused by sharp interfaces in the Earth model, thus accelerating convergence and generating images of higher quality when compared to images produced by conventional methods. With synthetic and field data experiments, we show that our elastic LSRTM method generates high-quality images that predict the data at receivers locations for arbitrary anisotropy, without the complexity of wave-mode decomposition and with high convergence rate.

Key words: anisotropy, least-squares migration, multicomponent, elastic, reverse time migration

1 INTRODUCTION

The search for more reliable seismic images and additional subsurface information, such as fracture distribution, drives advances in seismic acquisition, such as larger offsets, wider azimuths and multicomponent recording. All of these advances facilitate incorporating anisotropy and elasticity into wavefield extrapolation and reverse time migration (RTM), which is the state-of-art wavefield imaging algorithm suitable for complex geological structures (Baysal et al., 1983; McMechan, 1983; Lailly, 1983; Levin, 1984; Chang and McMechan, 1987; Lailly, 1983; Levin, 1984; Chang and McMechan, 1987; Hokstad et al., 1998; Zhang and Sun, 2009; Parmer et al., 2009). Although seismic acquisition improves with such advances, it always involves practical limitations, such as finite and irregular data sampling, that negatively impact anisotropic elastic wavefield migration. Consequently, this type of migration often leads to images with poor resolution and unbalanced illumination due to such practical acquisition constraints, even though image amplitudes are more reliable compared to acoustic and/or isotropic imaging (Lu et al., 2009; Phadke and Dhulib, 2012; Hobro et al., 2014; Du et al., 2014).

A common solution to these limitations is the implementation of least-squares reverse time migration (LSRTM), which iteratively attenuates artifacts caused by truncated acquisition and provides high-quality images that best predict observed data at receiver locations in a least-squares sense (Chavent and Plessix, 1999; Nemeth et al., 1999; Kuhl and Sacchi, 2003; Aoki and Schuster, 2009; Yao and Jakubowicz, 2012; Dong et al., 2012). However, to overcome these issues from acquisition and to exploit the advantages of more realistic wave extrapolation, some authors propose LSRTM that accounts for multiparameter Earth models, which can either incorporate solely anisotropy (Huang et al., 2016), elastic (Duan et al., 2016; Feng and Schuster, 2016; Xu et al., 2016; Alves and Biondi, 2016; Ren et al., 2017), or viscosity effects (Dutta and Schuster, 2014; Sun et al., 2015). For instance, the visco-acoustic and pseudo-acoustic implementations define Earth reflectivity in terms of contrast from a single model parameter (Dutta and Schuster, 2014; Huang et al., 2016) or in terms of a scalar image based on conventional cross-correlation between wavefields (Sun et al., 2015). Alternatively, elastic LSRTM implementations in isotropic media provide multiple images that are defined in terms of cross-correlation between decomposed wave modes (Duan et al., 2016; Feng and Schuster, 2016; Xu et al., 2016; Alves and Biondi, 2016). However, wave-mode decomposition in anisotropic media is costly and not as straightforward as in isotropic media; and therefore,
anisotropic wave-mode decomposition remains a subject of ongoing research (Yan and Sava 2009; Zhang and McMechan 2010; Yan and Sava 2011; Cheng and Fomel 2014; Sripanich et al. 2015; Wang et al. 2016).

Incorporating both elasticity and anisotropy into LSRTM is possible with elastic wavefield imaging using the energy norm (Rocha et al. 2017). This type of imaging exploits realistic vector displacement field extrapolation within a multiparameter anisotropic and elastic Earth model, and generates scalar images of the subsurface without costly decomposition of wave modes. As opposed to more conventional imaging conditions, the elastic imaging condition based on the energy norm exhibits no polarity reversal at normal incidence, and computes an appropriate correlation between wavefields that attenuates low-wavenumber artifacts caused by waves that do not correctly characterize subsurface reflectivity (e.g. wave backscattering from salt interfaces). Such artifacts are harmful to the LSRTM inversion and retard convergence because they do not accurately characterize reflections in the subsurface. One outstanding issue with energy imaging is the physical interpretation of the scalar image; we interpret the resulting amplitudes as a measure of energy transfer between incident and reflected wavefields, in contrast with more conventional images that represent amplitude conversion for different incident and reflected wave modes. As for any other wavefield migration method, its quality suffers from the acquisition limitations discussed earlier. Therefore, we define a linearized modeling operator that generates anisotropic elastic scattered wavefields, and we propose a LSRTM method that uses the energy image as a proxy for the reflectivity model. This LSRTM method is ideal to generate high-resolution images that correctly predict observed multicomponent data, without the shortcomings of different wave modes and full-wavefield phenomena present in anisotropic elastic wavefields. We demonstrate all the benefits of the method with synthetic and field data experiments.

2 THEORY

We can express elastic wavefield migration with mathematical operators such that

\[\mathbf{m} = \mathbf{L}^T \mathbf{d}_r, \]

where \(\mathbf{L}^T \) is the migration operator, \(\mathbf{d}_r \) is single-scattered multicomponent data recorded at receiver locations, and \(\mathbf{m} \) is an image or a set of images associated with the Earth reflectivity. The operator \(\mathbf{L}^T \) involves backpropagation of \(\mathbf{d}_r \) through an Earth model generating a receiver wavefield \(\mathbf{U}_r \), and the application of an imaging condition comparing \(\mathbf{U}_r \) with the source wavefield \(\mathbf{U}_s \) (extrapolated from a source function and location). For instance, an elastic imaging condition can involve decomposition of the wavefields \(\mathbf{U}_s \) and \(\mathbf{U}_r \) into separated wave modes and the application of crosscorrelation between wave modes (Yan and Sava 2007). One generally considers wavefield migration as the adjoint operator of linearized modeling (also known as single-scattering modeling) (Claerbout 1992). Therefore, \(\mathbf{L} \) is the linearized modeling operator such that

\[\mathbf{d}_r = \mathbf{Lm}, \]

and generates single-scattering data \(\mathbf{d}_r \) at receiver locations using an image containing reflectors that act as sources under the action of the background (or source) wavefield \(\mathbf{U}_s \) (embedded in the operator \(\mathbf{L} \)).

Therefore, we define \(\mathbf{m} \) as reflectivity that depends on a particular imaging condition and is not necessarily defined in terms of contrasts in the Earth model. The same principle applies to the linearized modeling operator \(\mathbf{L} \), which we define as an adjoint operator of a migration operator that utilizes a certain imaging condition, and \(\mathbf{L} \) is not necessarily related to the physics of single scattering.

2.1 Energy-norm linearized modeling and migration operators

For two anisotropic elastic source and receiver wavefields, which are functions of space \(x \) and time \(t \) \(\mathbf{U}_s (x, t) \) and \(\mathbf{U}_r (x, t) \), we can form an image using the energy imaging condition (Rocha et al. 2017):

\[I_E(x) = \sum_t \left[\rho \mathbf{U}_s \cdot \mathbf{U}_r - \left(\epsilon \nabla \mathbf{U}_s \right) : \nabla \mathbf{U}_r \right], \]

where \(\rho(x) \) is the density of the medium and \(\epsilon \) is the second-order stiffness tensor. The superscript dot applied on the wavefields indicates time differentiation and \(\nabla \) is the spatial gradient. The symbol : indicates Frobenius product between two matrices resulting in a scalar quantity (Golub and Loan 1996). A more compact form of equation \(I_E \) utilizes the so-called energy vectors, which are defined as

\[\square \mathbf{U}_s = \left\{ \rho^{1/2} \mathbf{U}_s, \epsilon^{1/2} (\nabla \mathbf{U}_s) \right\}, \]

\[\square \mathbf{U}_r = \left\{ \rho^{1/2} \mathbf{U}_r, \epsilon^{1/2} (\nabla \mathbf{U}_r) \right\}. \]

Analyzing the terms in equations \(I_E \) and \(\square \) one can note that the energy vectors contain twelve components, three from the terms \(\rho^{1/2} \mathbf{U}_s \) and \(\epsilon^{1/2} (\nabla \mathbf{U}_s) \), and nine from \(\epsilon^{1/2} (\nabla \mathbf{U}_r) \). We can also define \(\square \) as the energy operator containing derivatives and medium parameters applicable to a multicomponent wavefield. Using the definition of energy vectors, the imaging condition in equation \(I_E \) becomes

\[I_E = \sum_t \square \mathbf{U}_s \cdot \square \mathbf{U}_r. \]

In order to obtain the adjoint operator associated with the imaging condition in equation \(I_E \) we rewrite the expression in operator form:

\[\mathbf{m} = (\square \mathbf{U}_s)^T \square \mathbf{U}_r. \]

We can write the elastic wavefields \(\mathbf{U}_s \) and \(\mathbf{U}_r \) in terms of a sequence of operators applied to the source function \(\mathbf{d}_s \) and to the receiver data \(\mathbf{d}_r \), respectively. Firstly, we implement injection of the multicomponent source function and receiver data
into the Earth model by operators K_s and K_r, respectively. Secondly, we apply forward and backward elastic wavefield extrapolation operators E_s and E_r. Hence, we express the wavefields by $U_s = E_i K_s d_s$ and $U_r = E_r K_r d_r$, and we can rewrite equation [1] as

$$m = (\Box E_i K_s d_s)^T \Box E_r K_r d_r .$$

(8)

Equation [8] is in the form $m = L^T d_r$, where

$$L^T = (\Box E_i K_s d_s)^T \Box E_r K_r = (\Box U_s)^T \Box E_r K_r .$$

(9)

Therefore, this chain of operators L^T represents the migration based on the energy norm. We can obtain the operator L (adjoint of L^T) if we apply the adjoint for each individual operator and reverse the order of operators:

$$L = K_s^T E_i \Box^T (\Box E_r K_r d_r) = K_s^T E_i \Box^T \Box U_s ,$$

(10)

where $E_r^T = E_r$. This chain of operators L represents the linearized modeling based on the energy norm, involving extraction of multicomponent single-scattered data at the receiver locations (K_r^T), and elastic wavefield extrapolation (E_s) from virtual multicomponent sources computed by $\Box \Box U_s m$.

To elucidate the linearized modeling based on the energy norm, here are the steps involved in computing the scattered data at receivers (d_r):

(i) Inject the source wavelet d_s by utilizing K_s.

(ii) Extrapolate (E_r) the injected source $K_s d_s$, generating the background wavefield U_s.

(iii) Compute $\Box U_s$, a twelve-component vector field shown in equation [4].

(iv) Multiply each component of $\Box U_s$ by the scalar reflectivity model m.

(v) Compute $\Box^T \Box U_s m$, a three-component virtual source field.

(vi) Extrapolate (E_r) the virtual source $\Box^T \Box U_s m$, generating the scattered wavefield U_r.

(vii) Extract data at receiver locations d_r, by applying K_r^T to the scattered wavefield.

In Appendix A, we represent all individual operators involved in L and L^T pictorially in order to illustrate the series of increases and reductions in dimensionality throughout our linearized modeling and migration. Also, in Appendix B, we show all the components of the virtual source term $\Box^T \Box U_s m$ explicitly for a 2D vertical transversely isotropic (VTI) medium.

2.2 Energy-norm elastic least-squares migration

The linearized modeling operator L and its adjoint enables us to compute an image that minimizes the objective function $E(m) = \frac{1}{2}||Lm - d_r||^2$. The reflectivity that minimizes equation [11] is mathematically described as

$$m^{LS} = \left(L^T L \right)^{-1} L^T d_r .$$

(12)

The gradient of the objective function in equation [11] with respect to a model at a given iteration i is

$$g_i = \frac{\partial E(d, m_i)}{\partial m_i} = L^T (Lm_i - d_r) .$$

(13)

The model update at each iteration can be a scaled version of the gradient, or ideally can incorporate an approximation of the Hessian operator $H = (L^T L)$ (Aoki and Schuster, 2009; Tang, 2009; Dai et al., 2010). We use the energy norm of the source wavefield at every spatial location as our illumination compensation factor:

$$h_i(x) = ||U_s||_2^2 = \Box U_s \cdot \Box U_s ,$$

(15)

3 EXAMPLES

The following numerical examples demonstrate how the linearized modeling and migration operators based on the energy norm behave during LSRTM. Firstly, we perform an experiment with a single flat reflector to convey some intuition about how the method works; secondly, we show an experiment using a realistic synthetic Earth model containing many reflectors and structures to test the method in more complex geological settings with sharp interfaces that create backscattering artifacts in conventional imaging methods; finally, we validate the method by applying it to a North Sea field dataset.

3.1 Single-reflector model

We demonstrate energy-based LSRTM using a model defined by vertical transversely isotropy (VTI) with a reflector at $z = 0.55$ km. The model parameters are $\rho = 2.5 \text{ kg/cm}^3$, $V_{P0} = 2.2 \text{ km/s}$ (P-wave velocity along the symmetry axis), $V_{S0} = 1.3 \text{ km/s}$ (S-wave velocity along the symmetry axis), and Thomsen parameters $\epsilon = 0.4$ and $\delta = 0.3$ (Thomsen, 1986). The reflector consists of the following contrasts: $\Delta \rho = 0.7 \text{ kg/cm}^3$, $\Delta V_{P0} = 0.6 \text{ km/s}$, and $\Delta V_{S0} = 0.5 \text{ km/s}$. Figure [1(a)] shows the density model and the acquisition geometry that consists of 10 sources and a line of receivers at the surface. We create a scalar reflectivity based on the contrast of the Earth model (Figure [1(b)]). We generate shot records by two different methods: (a) full-wavefield modeling, which uses the Earth model with contrasts as conventionally implemented to generate synthetic elastic data; (b) linearized modeling based on the energy norm, which applies the operator in equation [10] to the reflectivity from Figure [1(b)] using the background Earth model (without contrast). We migrate both synthetic datasets using the energy imaging condition from...
3.2 2007 BP TTI anisotropic benchmark model

We use a portion of the 2007 BP tilted transversely isotropic (TTI) benchmark model to test the method in a more complicated synthetic model. The original model consists of \(V_{P0}, \epsilon, \delta, \) and the tilt of the symmetry axis at every point (\(\nu \)); we create \(V_{S0} \) and \(\rho \) from \(V_{P0} \) (Figure 1). The experiment geometry consists of 55 pressure sources equally spaced in the water at the surface \((z = 0.092 \text{km}) \), and a line of multicomponent receivers at every grid point at the water bottom, which varies between the depths of \(z = 1.0 \text{km} \) and \(z = 1.4 \text{km} \). Similarly to the preceding example, we generate two different datasets by (a) full-wavefield modeling, using the density model with contrasts (Figure 3(f)), and (b) linearized modeling, using a constant density model and the reflectivity model in Figure 3(e) to generate reflections. All other Earth model parameters are kept the same between the two experiments.

We obtain energy RTM and LSRTM images using linearized-modeled data (Figures 4(a) and 4(c)) and full-modeled data (Figures 4(b) and 4(d)). We apply a power gain with depth on the RTM images for a fair comparison with LSRTM images, since RTM images commonly have weaker amplitudes for greater depths and these amplitudes can easily be compensated by such gain. Notice that artifacts in the shallow part (mainly caused by the limited acquisition) are attenuated, and the deep reflectors as well as the salt flanks are better illuminated in the LSRTM images compared to their RTM counterparts. Both LSRTM images contain sharper reflectors and are closer to the assumed true reflectivity models shown in Figures 4(e) and 4(f). For the LSRTM images, one can observe low-wavenumber artifacts inside the salt because most of the waves in this region do not scatter towards the receivers due to this particular experiment, which images only one side of the salt body. These events create artifacts that accumulate over iterations, and they are part of the null space for the inversion, i.e., they do not predict any reflections in the observed data. Although such artifacts do not represent actual reflectors, they are not harmful to the inversion process since they reside in the null space of the reflectivity model and do not mask any reflectors inside the salt body.

In Figures 3(a) and 3(b) we show the observed data at a particular shot location \((x = 41.4 \text{km}) \) containing offsets up to 8km for linearized and full-wavefield modeling, respectively. The corresponding data residuals after 20 iterations are shown in Figures 5(c) and 5(d) which are diminished when compared to the original datasets. The objective functions for both experiments are shown in Figure 5(e). As expected, the objective function for the inversion using the dataset generated with the linearized modeling operator itself converges to zero, as our migration and modeling operators are proper adjoints of each other. The objective function for the experiment with full-modeled data decreases substantially and can potentially decrease more if more iterations are allowed, since the objective function at iteration 20 retains a significant slope, as seen in Figure 5(e). However, we expect the rate of convergence to be smaller over iterations until the objective function reaches a plateau, because our modeling operator cannot predict events beyond single-scattering in full-modeled data. In addition, differently from the single-reflector preceding example, several reflectors in this Earth model cause multiple scattering events during full-wavefield modeling that are also not predicted by our linearized modeling operator. All events that exist in the data and are not predicted by our operator might form artifacts in the image, as for any other migration methods applied on data that contains multiple reflections, turning waves, etc.

3.3 Volve OBC real dataset

We apply the method to a field dataset acquired by an ocean-bottom cable (OBC) in the Volve field, located in the North Sea (Szydlik et al., 2007). Although the original dataset is 3D, we use a 2D section near the central crossline to reduce computational cost. The Earth model is elastic VTI and the corresponding parameters are shown in Figure 5. The prominent layer around \(z = 3 \text{ km} \) is a chalk layer that corresponds to the hydrocarbon reservoir. The dataset provided was pre-processed to retain only the down-going pressure component, and a par-
Figure 1. (a) Density model used in full-wavefield modeling, and (b) reflectivity model used in linearized modeling. The acquisition geometry consists of 10 sources (blue) and a line of receivers (green). Elastic energy RTM image with (c) full-modeled data and with (d) linearized-modeled data. Elastic energy LSRTM image with (e) full-modeled data and with (f) linearized-modeled data. Note how LSRTM attenuates artifacts caused by sparse acquisition.

4 CONCLUSIONS

We propose an elastic LSRTM method that uses imaging operators based on the energy norm and delivers a scalar image that contains attenuated artifacts and explains data at receiver locations. The absence of strong backscattering artifacts in our results shows the advantage of our migration operator compared to its conventional counterparts. Using displacement fields directly and without costly wave-mode decomposition, our linearized modeling operator generates multicomponent datasets with a scalar reflectivity that correctly predicts the amplitude and phase of the reflections in observed data, as illustrated by the final modeled data and objective functions from our numerical examples. As for any other linearized modeling procedure, events that are not reflections are inaccurately predicted by our linearized operator, and these events show in the image as artifacts. Future work involves application of our method to another multicomponent field dataset that contains both vertical and horizontal displacement components, and to 3D Earth models.
Figure 2. Vertical- (left) and horizontal- (right) component data from (a) full modeling and from (b) linearized modeling. Data residuals from the LSRTM images using (c) full modeling and from (d) linearized modeling. (e) Normalized objective functions for inversion using full-modeled data (blue) and linearized data (red). The far-offset amplitudes from full-modeled data are not correctly predicted by the linearized modeling operator.
Figure 3. BP TTI model parameters: (a) P-wave and (b) S-wave velocities along the symmetry axis; Thomsen parameters (c) δ and (d) ϵ along the symmetry axis; (e) tilt of the symmetry axis (ν); (f) density with contrasts for full-wavefield modeling experiment.
Figure 4. RTM images using (a) linearized-modeled data and (b) full-modeled data. LSRTM images after 20 iterations using (c) linearized-modeled data and (d) full-modeled data. (e) True reflectivity model for linearized-modeled data and (f) Laplacian operator applied on the density model in Figure 3(f) in order to show contrasts that create reflections in the full-wavefield modeling.
Figure 5. Vertical component of observed data at $x_s = 41.4$ km obtained by (a) linearized modeling using the reflectivity model in Figure 4(c) and (b) full-wavefield modeling using density model in Figure 3(f). Vertical component data residuals after 20 iterations for (c) linearized and (d) full-wavefield modeling experiments. (e) Normalized objective function for experiments using (red) linearized and (blue) full-modeled data.
Figure 6. Volwe 2D model parameters: (a) P-wave and (b) S-wave velocities along the vertical symmetry axis; Thomsen parameters (c) δ and (d) ϵ.

per use the Madagascar open-source software package \cite{Fomel2013} freely available from http://www.ahay.org.

REFERENCES

Figure 7. Volve experiment: (a) observed, (b) residual and (c) modeled (after 15 iterations) pressure shot gathers for a source at $x = 6.4\text{km}$. The main reflections are correctly predicted by our modeling operator. (c) Normalized objective function for LSRTM.

Huang, J., D. Si, Z. Li, and J. Huang, 2016, Plane-wave least-squares reverse time migration in complex VTI media: 86th Annual International Meeting, SEG, Expanded Abstracts,
Figure 8. Volve experiment: energy (a) RTM and (b) LSRTM images. Reflectors around $z = 3.0$ km become sharper, especially at the edges of the image. The arrows indicate reflectors that become more visible in the LSRTM image relative to RTM.
The energy image \(\mathbf{m} (x) \) is obtained by the expression

\[
\mathbf{m} = (\Box \mathbf{U}_r)^T \Box \mathbf{U}_r ,
\]

which can be represented schematically as

\[
\mathbf{m} = (\Box \mathbf{E}_r \mathbf{K}_r \mathbf{d}_r)^T \Box \mathbf{E}_r \mathbf{K}_r \mathbf{d}_r .
\]

The operator \(\Box \) turns a three-component displacement field into a twelve-component vector field that contains spatial and temporal derivatives. Equation [A.1] also implies summation over time. We represent this increase in dimensions pictorially by making the matrix of \(\Box \) considerably larger than the wavefield vectors \(\mathbf{U}_r \) and \(\mathbf{U}_r \). Using extrapolator and injection operators, as explained in the body of the paper, we have

\[
\mathbf{m} = \mathbf{L}^T \mathbf{d}_r .
\]
Linearized modeling is defined as
\[\mathbf{d}_r = \mathbf{Lm} . \]
(A.4)

Based on equation (A.2) we can rewrite equation (A.4) as
\[\mathbf{d}_r = \mathbf{K}_r \mathbf{E}_+ \otimes \mathbf{m} . \]
(A.5)

which is represented schematically as
\[\begin{bmatrix} \mathbf{d}_r \mathbf{K}_r & \mathbf{E} & \otimes & \mathbf{m} \end{bmatrix} \]

or
\[\mathbf{d}_r = \mathbf{K}_r \mathbf{E}_+ \otimes \mathbf{m} = \mathbf{K}_r \mathbf{E}_+ \mathbf{m} . \]
(A.6)

The virtual multicomponent source computed for the generation of the scattered wavefield is represented by the chain of operators \(\mathbf{d}_r = \mathbf{K}_r \mathbf{E}_+ \mathbf{m} \):
\[\begin{bmatrix} \mathbf{d}_r \mathbf{K}_r & \mathbf{E} & \otimes & \mathbf{m} \end{bmatrix} \]

Appendix B

Multicomponent virtual source for 2D VTI modeling

We can write the energy imaging condition (equation [3]) for a two-dimensional vertical transversely isotropic medium in matrix notation as
\[I_E (\mathbf{x}) = \rho \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 \end{bmatrix} \begin{bmatrix} \dot{U}_y^1 & \dot{U}_y^3 \end{bmatrix} - \]
\[\begin{bmatrix} C_{111} & C_{133} & C_{55} & 0 \\ C_{55} & C_{333} & 0 & C_{131} \end{bmatrix} \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 & \dot{U}_y^1 & \dot{U}_y^3 \end{bmatrix} = 0, \]
(B.1)

where \(\dot{U}_x^i \) is the \(i \)-th derivative of the \(i \)-th-component of wavefield \(\mathbf{U}_x \) or \(\mathbf{U}_r \), and \(C_{ij} \) are the stiffness coefficients in Voigt notation. The symbol \(\otimes \) represents Frobenius product between two matrices: an element-wise product between matrices with the corresponding sum of the products resulting in a scalar. Indices \(i, j = \{1, 2, 3\} \) refer to \(\{x, y, z\} \). The superscript dot on \(\dot{U}_x^i \) indicates time differentiation. Rewriting all derivatives applied to \(U^r \) as operators, we obtain
\[I_E = \rho \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 \end{bmatrix} \begin{bmatrix} D_t & 0 \\ 0 & D_t \end{bmatrix} \dot{U}_x^1 - \]
\[\begin{bmatrix} C_{111} & C_{133} & C_{55} & 0 \\ C_{55} & C_{333} & 0 & C_{131} \end{bmatrix} \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 & \dot{U}_y^1 & \dot{U}_y^3 \end{bmatrix}, \]
(B.2)

where \(D_t \), \(D_1 \), and \(D_3 \) indicate derivative operators in time, \(x \), and \(z \), respectively. Therefore, the application of the energy imaging condition can be considered as an operator acting on the receiver wavefield \([U_x^1 U_x^3] \). Its adjoint operator (linearized modeling) acts on the image (or reflectivity) \(I_E \):
\[[f_1 f_3] = \begin{bmatrix} D_t^T & 0 \\ D_2^T & D_3^T \end{bmatrix} \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 \end{bmatrix} \rho I_E - \]
\[\begin{bmatrix} C_{111} & C_{133} & C_{55} & 0 \\ C_{55} & C_{333} & 0 & C_{131} \end{bmatrix} \begin{bmatrix} \dot{U}_x^1 & \dot{U}_x^3 & \dot{U}_y^1 & \dot{U}_y^3 \end{bmatrix} I_E, \]
(B.3)

where \([f_1 f_3] \) is a two-component virtual source that generates the scattering wavefield \([U_x^1 U_x^3] \). We can rewrite the expression for each component individually for such virtual source:
\[f_1(x, t) = D_t^T \rho D_t U_x^1 I_E - \]
\[D_2^T \left[C_{111} D_t U_x^1 + C_{133} D_t U_x^3 \right] I_E - \]
\[D_3^T \left[C_{55} \left(D_t U_x^1 + D_t U_x^3 \right) \right] I_E, \]
(B.4)

\[f_3(x, t) = D_t^T \rho D_t U_x^3 I_E - \]
\[D_2^T \left[C_{55} \left(D_t U_x^3 + D_t U_x^1 \right) \right] I_E - \]
\[D_3^T \left[C_{333} D_t U_x^3 + C_{133} D_t U_x^1 \right] I_E. \]
(B.5)

Therefore, we can consider the generation of the energy scattered wavefield in an elastic 2D VTI medium as the extrapolation of a virtual multicomponent source defined by equations (B.4) and (B.5).