Multicomponent imaging with Distributed Acoustic Sensing

Ivan Lim Chen Ning & Paul Sava

Center for Wave Phenomena, Colorado School of Mines
Multicomponent Imaging
with
Distributed Acoustic Sensing
6 components

ε_{xx} ε_{xy} ε_{xz}

ε_{yy} ε_{yz} ε_{zz}

z (km)

0.2 0.4
equation of motion

\[\rho \ddot{u} - \nabla \cdot \sigma = f \]

stress-strain relation

\[-\sigma + c : \varepsilon = h \]

\(u = \) displacement

\(\sigma = \) stress tensor

\(\rho = \) density

\(c = \) stiffness tensor
equation of motion

\[\rho \ddot{u} - \nabla \cdot \sigma = f \]

stress-strain relation

\[-\sigma + \mathbf{c} : \varepsilon = h \]

\(f = \) volume force density

\(h = \) deformation density
\[\mathbf{V} = - \oint_{\partial \Omega} ds \ u \ast \mathbf{G}^f \]

\[\mathbf{G}^f = \text{propagator with } f \text{ source} \]
\[V = - \oint_{\partial \Omega} ds \left[\sigma \ast G^f + u \ast G^h \right] \cdot n \]

(Ravasi and Curtis, 2013)

\(G^f = \) propagator with \(f \) source
\(G^h = \) propagator with \(h \) source
example
- explosive source
- multicomponent receivers
Marmousi II example
pressure sources
multicomponent receivers
\[l_E = \sum_{e,t} \left[\rho \dot{U} \cdot \dot{V} + (\mathbf{c} \nabla U) : \nabla V \right] \]

(Rocha et al., 2017)

\[U = \text{source wavefield} \quad \mathbf{c} = \text{stiffness tensor} \]
\[V = \text{receiver wavefield} \quad \rho = \text{density} \]
\(f, h \)
\(f, h \)
extrapolation from the water layer
- pressure sources
- multicomponent receivers
f: streamer
take home message

MIDAS improves elastic seismic imaging
Matteo Ravasi, Statoil

Daniel Rocha
MIDAS