Colorado School of Mines
Payne Institute for Public Policy

Glossary of Terminology related to Responsible Gas (v9)

Every industry has its own vocabulary. This helps a great deal in discussing operational detail within your group as everyone shares the same context so you can use abbreviations and local terms to make your communications more efficient. But when it comes to communications between different groups these local tribal languages present a barrier to efficient communications. This glossary provides definitions for key terms for the field of Responsible Gas, crossing the discipline gap between oil and gas production operations and data analytics as to create the common understanding needed for correct interpretation of terms. This glossary uses many references which are cited for each definition.

Table of contents:
1. Overview, basic definitions, and units of measure 1
2. Oil and gas industry equipment and operations 9
3. Emission measurement technology 29
4. Process control 42
5. Data analysis techniques 46
6. Emission reporting policy and practices 53

1. Overview, basic definitions and units

Upstream operations consisting primarily of exploring for, developing, producing, and transporting crude oil and natural as (including liquified natural gas).
Unconventional oil and gas - Unconventional resources are hydrocarbon-bearing units where the permeability and porosity are so low that the resource cannot be extracted economically through a vertical well bore and instead required a horizontal well bore followed by multistage hydraulic fracturing to achieve economic production.

Subsurface Characterization - Subsurface characterization is critical for subsurface storage systems because it provides important information about the geology and physical properties of the subsurface rock formations that will be used to store materials. By characterizing the subsurface, engineers, and scientists can identify potential risks and develop strategies to mitigate them. Subsurface characterization can help identify potential pathways for leakage or migration of stored fluids, which can inform decisions about where to place monitoring wells and injection wells. Characterization can also help identify potential geohazards, such as faults or fractures, that could impact the integrity of the storage system. Additionally, subsurface characterization can inform decisions about the design and operation of the storage system, such as determining the optimal injection pressure and rate.

Downstream - The final stage in the oil and gas value chain. Activities include distribution, retail, marketing, product development, and consumption by the end user.

Petroleum Refining - Petroleum refineries convert (refine) crude oil into petroleum products for use as fuels for transportation, heating, paving roads, and generating electricity and as feedstocks for making chemicals. Refining breaks crude oil down into its various components, which are then selectively reconfigured into new products.

Midstream - A term referring to a stage in the oil and gas value chain following production and preceding distribution. Activities include processing, pipeline transportation, refining, and storage.

Gathering - The collection of petroleum products from their extraction point (wells), and their transport to a processing facility. A typical gathering system is highly branched, and consists of small-medium diameter pipelines with medium operating pressures.

Transmission - The transportation of petroleum products from processing facilities to distribution hubs. Transmission systems consist of large-diameter, high-pressure pipelines that transport high volumes of petroleum products across large distances.

API Gravity - The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water: if its API gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks.

API gravity is thus an inverse measure of a petroleum liquid's density relative to that of water (also known as specific gravity). It is used to compare densities of petroleum liquids. For example, if one petroleum liquid is less dense than another, it has a greater API gravity. Although API gravity is mathematically a dimensionless
quantity it is referred to as being in 'degrees'. API gravity is graduated in degrees on a hydrometer instrument. API gravity values of most petroleum liquids fall between 10 and 70 degrees.

A specific gravity scale developed by the American Petroleum Institute (API) for measuring the relative density of various petroleum liquids, expressed in degrees. API gravity is graduated in degrees on a hydrometer instrument and was designed so that most values would fall between 10° and 70° API gravity. The arbitrary formula used to obtain this effect is: API gravity = (141.5/SG at 60 degF) – 131.5, where SG is the specific gravity of the fluid. https://glossary.oilfield.slb.com/en/Terms/a/api_gravity.aspx

In 1916, the U.S. National Bureau of Standards accepted the Baumé scale, which had been developed in France in 1768, as the U.S. standard for measuring the specific gravity of liquids less dense than water. Investigation by the U.S. National Academy of Sciences found major errors in salinity and temperature controls that had caused serious variations in published values. Hydrometers in the U.S. had been manufactured and distributed widely with a modulus of 141.5 instead of the Baumé scale modulus of 140. The scale was so firmly established that, by 1921, the remedy implemented by the American Petroleum Institute was to create the API gravity scale, recognizing the scale that was actually being used.

Associated Gas - Sweet or sour natural gas that is associated with the production of crude oil or crude bitumen. Often referred to as “solution gas”, this gas evolves or “breaks out solution” from crude oil or crude bitumen under specific reservoir or production conditions.

Liquified Natural Gas (or LNG) - Natural gas that has been cooled down to liquid form for ease and safety of non-pressurized storage or transport.

Audit - The verification of an organization's emissions data, practices, or performance by a third party.

Certification - A voluntary initiative that holds participants to binding standards that may include emissions reduction performance targets, use of specific technologies, and adoption of methodologies. Certifications entail an explicit declaration of achievement from the administering organization to the participant.
Veritas - Veritas is a methane emission measurement and verification initiative led by GTI Energy. Veritas’ technical protocols will provide companies and countries with methane emissions reduction targets with a consistent approach to measuring and verifying methane emissions- enabling a credible, consistent, verifiable, and transparent methodology.

MiQ - The MiQ Standard is an independent framework for assessing methane emissions from the production of natural gas, along with the policies and practices of the producers making it. It is used by independent auditors as a ‘rulebook’ for assessing how well a producer or facility is doing in terms of managing methane emissions from its operations.

Equitable Origin - The Equitable Origin system of voluntary site certification and market mechanisms drives positive change that reduces the social and environmental impact of energy development operations, creates a new market for more responsibly produced energy, and empowers consumers and businesses to make ethical choices when purchasing energy.

Trustwell - Project Canary's proprietary TrustWell™ operational analysis program includes 600 unique data points across 24 categories, which provides third party verification of operational responsibility. TrustWell™ certified RSG demonstrates the operator has utilized the highest standards and practices in all phases of their operations.

Commitment - A voluntary initiative requiring participants to pledge efforts towards a goal that is decided upon by a governing body or collectively by participants within a group. Commitments are typically auditable, binding, and focus on achieving future goals.

Mitigation - The amount that emissions are reduced below a baseline.

Voluntary initiative - A coordinated effort managed by an administering organization that enables participants to take standardized voluntary steps towards targeting, achieving, and/or taking credit for emissions reduction

Greenhouse gases: A gas that traps heat in the atmosphere. Those gases, such as water vapor, carbon dioxide, nitrous oxide, methane, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride, that are transparent to solar (short-wave) radiation but opaque to long-wave (infrared) radiation, thus preventing long-wave radiant energy from leaving Earth's atmosphere. The net effect is a trapping of absorbed radiation and a tendency to warm the planet's surface. https://www.eia.gov/tools/glossary/index.php?id=G#greenh_gases

In an oil field, oil is almost always associated with a certain quantity of natural gas: newer oil wells are equipped for the recovery of both natural gas, natural gas liquids and crude oil and hence the gas is an additional resource of the oilfield. In some basins, natural gas is the primary hydrocarbon resource. However, the recovery of natural gas presumes that there are the transportation infrastructures and markets available. When the quantity of gas recovered from the oilfield as a “secondary” product is limited, economic solutions maybe not exist. Hence the problem arises of what to do with the associated gas.

Hydrocarbon - A naturally occurring organic compound comprising hydrogen and carbon. Hydrocarbons can be as simple as methane [CH4], but many are highly complex molecules, and can occur as gases, liquids or solids. The molecules can have the shape of chains, branching chains, rings or other structures. Petroleum is a complex mixture of hydrocarbons. The most common hydrocarbons are natural gas, oil and coal.

Natural Gas - Natural gas is a naturally occurring and flammable hydrocarbon gas that is used for fuel. Its primary component is methane, but it can also contain ethane, propane, butane, and pentanes. Often, impurities including oxygen, hydrogen sulfide (H2S), nitrogen, water, and carbon dioxide (CO2) are also present.
Methane - A colorless, odorless gas that occurs abundantly in nature and as a product of certain human activities. Methane is the simplest member of the paraffin series of hydrocarbons and is among the most potent of the greenhouse gases. Methane is a chemical compound with the chemical formula CH₄. It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure.

Colorado was the first state in the nation to enact leak detection and repair (LDAR) regulations in 2014 to reduce methane emissions. In December 2019, those rules were made more rigorous by the Air Quality Control Commission and are the toughest air regulations in the country.

Carbon Dioxide - Carbon dioxide (chemical formula CO₂) is an acidic colorless gas with a density about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (412 ppm) by volume, having risen from pre-industrial levels of 280 ppm. Natural sources include volcanoes, forest fires, hot springs, geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide has a sharp and acidic odor and generates the taste of soda water in the mouth. However, at normally encountered concentrations it is odorless.

As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth and its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae, and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO₂ is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. Since plants require CO₂ for photosynthesis, and humans and animals depend on plants for food, CO₂ is necessary for the survival of life on earth.

Ozone - Ozone (or trioxgen) is an inorganic molecule with the chemical formula O₃. It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope O₂, breaking down in the lower atmosphere to O₂ (dioxgen). Ozone is formed from dioxgen by the action of ultraviolet (UV) light and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the latter, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation.

Ozone is a powerful oxidant (far more so than dioxgen) and has many industrial and consumer applications related to oxidation. This same high oxidizing potential, however, causes ozone to damage mucous and respiratory tissues in animals, and also tissues in plants, above concentrations of about 0.1 ppm. While this makes ozone a potent respiratory hazard and pollutant near ground level, a higher concentration in the ozone layer (from two to eight ppm) is beneficial, preventing damaging UV light from reaching the Earth's surface.
Eleven chemicals make up roughly 98 percent of emissions that occur during oil and natural gas development:

- Methane 83.9%
- Ethane 5.0%
- Propane 3.6%
- Butane 1.8%
- Pentane 0.9%
- Isobutane 0.8%
- Isopentane 0.7%
- Propylene 0.4%
- Hexane 0.3%
- Ethylene 0.3%
- Benzene 0.0% (a minimal amount of benzene is released during the four stages of development, but as the only chemical from oil and natural gas development that is a known carcinogen, it is important to include on this list. Click here for more information on benzene.)

While the largest emissions from oil and gas development (methane and ethane) are not contributors to ozone formation according to the EPA, the other nine chemicals on the list are classified as volatile organic compounds (VOCs). When VOCs are combined with nitrogen oxides (NOx) and sunlight, they will demonstrate varying reactivity rates, and given enough time can lead to ozone formation. High levels of ozone can cause respiratory issues, particularly in sensitive populations and those with asthma. Due to these health impacts, Colorado has regulations in place to reduce VOC and NOx emissions from oil and natural gas industry, as well as emissions from other contributors, such as cars, boats, lawn mowers and even paints. (COGA Factsheet https://www.coqa.org/factsheets/air-monitoring-and-measurements)

Nitrogen Dioxide - Nitrogen dioxide is a chemical compound with the formula NO2. It is one of several nitrogen oxides. NO2 is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year for use primarily in the production of fertilizers. At higher temperatures it is a reddish-brown gas. It can be fatal if inhaled in large quantities.[8] Nitrogen dioxide is a paramagnetic, bent molecule with C2v point group symmetry. It is included in the NOx family of atmospheric pollutants.

The reddish-brown color is a consequence of preferential absorption of light in the blue region of the spectrum (400 – 500 nm), although the absorption extends throughout the visible (at shorter wavelengths) and into the infrared (at longer wavelengths). Absorption of light at wavelengths shorter than about 400 nm results in photolysis (to form NO + O, atomic oxygen); in the atmosphere the addition of the oxygen atom so formed to O2 results in ozone.

The most prominent sources of NO2 are internal combustion engines, as combustion temperatures are high enough to thermally combine some of the nitrogen and oxygen in the air to form NO2. Outdoors, NO2 can be a result of traffic from motor vehicles. Indoors, exposure arises from cigarette smoke, and butane and kerosene heaters and stoves. Workers in industries where NO2 is used are also exposed and are at risk for occupational lung diseases, and NIOSH has set exposure limits and safety standards. Workers in high voltage areas especially those with spark or plasma creation are at risk. Agricultural workers can be exposed to NO2 arising from grain decomposing in silos; chronic exposure can lead to lung damage in a condition called "silo-filler's disease".
Gas to Oil ratio (GOR) - When oil is produced to surface temperature and pressure it is usual for some natural gas to come out of solution. The gas/oil ratio (GOR) is the ratio of the volume of gas ("scf") that comes out of solution to the volume of oil — at standard conditions. The GOR is a dimensionless ratio (volume per volume) in metric units, but in field units, it is usually measured in cubic feet of gas per barrel of oil or condensate.

Geo-mechanics - Geomechanics is the study of the mechanical behavior of rocks, including their response to stresses and strains. In underground storage systems, geo-mechanical considerations include the stability of the rock formation, the potential for subsidence, faulting, or fracturing, and the potential impact of fluid injection or extraction on the rock’s mechanical properties. Geo-mechanical modeling is crucial for predicting the behavior of the system over time and ensuring its long-term safety and effectiveness. By accurately modeling the geo-mechanical response to fluid injection or extraction, we can identify potential risks and develop strategies to mitigate them. Understanding the potential for subsidence, fault reactivating, and fracturing can inform decisions about where to place injection wells and how to control injection rates.

Rock-Fluid Interactions - Fluid-rock interactions are a critical aspect of underground storage systems, where fluids are stored within subsurface formations. These interactions occur as the stored fluid encounters the surrounding rock/fluid, leading to changes in the physical and chemical properties of both the fluid and the rock. The stored fluid can cause changes in the rock’s porosity and permeability, which can affect fluid flow and storage capacity. Additionally, chemical reactions between the fluid and the rock can alter the fluid’s composition, potentially leading to changes in its properties such as viscosity and reactivity. Understanding fluid-rock interactions is essential for the long-term safe and effective operation of underground storage systems. It enables engineers and scientists to anticipate and mitigate any adverse effects on the system, such as changes in fluid quality or the potential for well clogging.

Fluid Flow in porous media - Fluid flow in porous media is a fundamental process that plays a critical role in all subsurface problems. Porous media, such as rock formations, contain interconnected pores and fractures that allow fluids to flow through them. Understanding how fluids flow through these media is essential for predicting the behavior of subsurface storage systems, including the injection, storage, and extraction of fluids. Knowledge of fluid flow can allow us to quantify how fluids interact with each other and how they flow in complex geometries. We cannot accurately characterize the behaviors of subsurface systems without monitoring fluid flow in such systems.

Porosity - Porosity is an intrinsic property of every material. It refers to the amount of empty space within a given material. In a soil or rock the porosity (empty space) exists between the grains of minerals. In a material like gravel the grains are large and there is lots of empty space between them since they don't fit together very well. However, in a material like a gravel, sand, and clay mixture the porosity is much less as the smaller grains fill the spaces. The amount of water a material can hold is directly related to the porosity since water will try and fill the empty spaces in a material. We measure porosity by the percentage of empty space that exists within a particular porous media.
Permeability - Permeability is another intrinsic property of all materials and is closely related to porosity. Permeability refers to how connected pore spaces are to one another. If the material has high permeability then pore spaces are connected to one another allowing water to flow from one to another, however, if there is low permeability then the pore spaces are isolated and water is trapped within them. For example, in a gravel all of the pores well connected one another allowing water to flow through it, however, in a clay most of the pore spaces are blocked, meaning water cannot flow through it easily. https://courses.lumenlearning.com/geo/chapter/reading-porosity-and-permeability/

Monitoring, Management and Risk Modeling - Subsurface storage systems are an increasingly important technology for the safe and efficient storage of substances such as natural gas, carbon dioxide, and hydrogen. However, these systems also carry certain risks, such as leakage, migration, and potential impacts on groundwater quality. To minimize these risks, monitoring, and management of subsurface storage systems are critical. This includes ongoing monitoring of pressure and flow rates and real-time analysis of potential leaks. Risk modeling is also essential, to ensure that potential risks are identified and managed proactively. This involves using advanced modeling tools to simulate potential scenarios and evaluate the likelihood of various outcomes. By combining effective monitoring, management, and risk modeling, subsurface storage systems can be operated safely and effectively, while minimizing the potential impacts on the environment and public health.

Bubble Point Pressure – Hydrocarbon bubble point is the pressure at which a pressurized hydrocarbon liquid will become oversaturated with respect to the amount of entrained gas dissolved in it. The bubble point pressure, also known as the saturation pressure, is the pressure, at some reference temperature, that the first bubble of gas is liberated from the liquid phase. The reference temperature is usually the reservoir temperature, but any temperature can be used. The bubble point pressure is determined by an experiment called "Constant Composition Expansion" (CCE), also called: "flash liberation". The device used to perform this experiment is the PV cell,
Reid Vapor Pressure (RVP) - Reid vapor pressures (RVPs) are sometimes specified by crude oil purchasers, particularly if the crude is to be transported by tanker or truck prior to reaching a processing plant. Purchasers specify low RVPs so that they will not be paying for light components in the liquid, which will be lost due to weathering. RVP is used to characterize the volatility of gasolines and crude oils. The RVP of a mixture is determined experimentally according to a procedure standardized by the American Society for Testing Materials at 100 °F (37.8 °C). A sample is placed in a container such that the ratio of the vapor volume to the liquid volume is 4 to 1. The absolute pressure at 100 °F (37.8 °C) in the container is the RVP for the mixture.

Pour Point – The pour point is defined as the lowest temperature at which the sample will flow. It indicates how easy or difficult it is to pump the oil, especially in cold weather. It also indicates the aromaticity or the paraffinity of the crude oil or the fraction. Pour point represent the lowest temperature at which oil is capable of flowing under gravity. A lower pour point means that the paraffin content is low. Pour points for the whole crude and fractions boiling above 232 degrees C are determined by standard tests like ASTM D97. When temperature is less than the pour point of a petroleum product it cannot be stored or transferred through a pipeline.

BOE - A barrel of oil equivalent (BOE) is a term used to summarize the amount of energy that is equivalent to the amount of energy found in a barrel of crude oil, natural gas liquids and natural gas. Natural gas volumes are converted to barrels based on energy content. By encompassing different types of energy resources into one figure, analysts, investors, and management can assess the total amount of energy the firm can access. This is also known as crude oil equivalent (COE).

Many oil companies produce both oil and gas, among other petroleum products, but the unit of measure for each is different. Oil is measured in barrels and natural gas is measured in billions of cubic feet (BCFE). To help facilitate like-for-like comparisons, the industry standardized natural gas production into "equivalent barrels" of oil. One barrel of oil is generally deemed to have the same amount of energy content as 6,000 cubic feet of natural gas. So, this quantity of natural gas is "equivalent" to one barrel of oil. BOE can be compared with natural gas equivalent, which translates the energy in an amount of oil (or other energy product) into that of gas.

Converting assets to BOE is fairly simple. In terms of volume, oil is represented per barrel, and natural gas is represented per thousand cubic feet (Mcf). There are 42 gallons (approximately 159 liters) in one barrel of oil. The energy contained in a barrel of oil is approximately 5.8 million British thermal units (MBtus) or 1,700
kilowatt-hours (kWh) of energy. This is an approximate measure because different grades of oil have slightly different energy equivalents. One Mcf of natural gas contains approximately one-sixth of the energy of a barrel of oil; therefore, 6,000 cubic feet of natural gas (6 Mcf) have the energy equivalent of one barrel of oil. For large quantities of energy, BOE can be represented at kilo-barrels of oil equivalent (kBOE), which is 1,000 BOE.

https://www.investopedia.com/terms/b/barrelfoilequivalent.asp

2. Oil and gas industry equipment and operations

Well pad – Once an energy company has taken care of the exploration work, leased the land they are interested in drilling on, selected the initial drilling sites and has applied for and received their drilling permits they can begin to prepare a site for the drilling process, referred to as the well pad. The site preparation work itself may take several months and cost several hundred thousand dollars to construct pending on how much earth-moving work needs to be completed for the well pad.

The area needed for a well pad which typically ranges from 5-10 acres in size, depending on how many wells may ultimately be drilled on it, which may be just one or more than twenty. Where the topography is more sloped it will likely take more excavation work in order to grade out the well pad, which needs to be flat and stable to accommodate the drilling rig and fracturing equipment. The design of the well pad needs to be consistent with state regulations as described in the previous section, and be engineered to handle stormwater, contain spills while maintaining slope stability. In addition, environmental factors such as the presence of wetlands, proximity to surface water, and sensitive wildlife habitat need to factored into the site selection and construction process to minimize any impacts. https://www.e-education.psu.edu/earth109/node/941

Computerized maintenance management system (CMMS), also known as computerized maintenance management information system (CMMIS), is a software package that maintains a computer database of information about an organization's maintenance operations. This information is intended to help maintenance
workers do their jobs more effectively (for example, determining which machines require maintenance and which storerooms contain the spare parts they need) and to help management make informed decisions (for example, calculating the cost of machine breakdown repair versus preventive maintenance for each machine, possibly leading to better allocation of resources).

Atmospheric Tank - A storage tank in which product is stored at ambient pressure. Atmospheric tanks are designed to operate at pressures less than 0.5 psig.

Combustion - The chemical reaction where a hydrocarbon reacts with oxygen to create carbon dioxide, water, and heat. Energy is obtained from fossil fuels and other sources through combustion of the fuel. Combustion is a chemical reaction between substances, usually including oxygen and usually accompanied by the generation of heat and light in the form of flame. The rate or speed at which the reactants combine is high, in part because of the nature of the chemical reaction itself and in part because more energy is generated than can escape into the surrounding medium, with the result that the temperature of the reactants is raised to accelerate the reaction even more.

Combustion Efficiency - How efficiently a piece of equipment is burning a fuel. Combustion efficiency is an important consideration when estimating emissions, since combustion of natural gas destroys methane and creates carbon dioxide, which has a lower greenhouse potential. Higher combustion efficiencies will result in a higher degree of methane destruction and lower overall carbon intensity.

Completion - The work incorporating the steps taken to transform a drilled well into a producing one. These steps include, but are not limited to: casing the well, cementing the casing, perforating the casing, installing down hole flow control or isolation equipment, hydraulic fracturing or stimulation, and installing a well head with a production tree.

Flow back - After a well has been drilled, the casing cemented, the shale fractured, the pad laid, and the piping and production equipment installed, the flowback phase begins. Flowback typically lasts between 30 and 120 days. The fluid produced during this phase is a mixture of crude oil, natural gas, water, and sand. A producer’s goal during this period is to manage the sandy flowback fluid and keep the well open and running so it can normalize and more freely flow oil and gas. https://kimray.com/training/flowback-quick-guide.
Handheld instrument - A small, portable methane detection instrument that is often used to detect and diagnose leaks at the component scale. Examples include optical gas imaging (OGI) cameras and handheld organic vapor analyzers (OVAs).

Hot Tap - The ability to safely tie into a pressurized system (e.g., pipeline, process piping, pressure vessels, etc.) by drilling or cutting into it while it is on stream and under pressure.

Predictive Maintenance and Condition-based Monitoring: Predictive maintenance (PdM) is maintenance that monitors the performance and condition of equipment during normal operation to reduce the likelihood of failures. Also known as condition-based maintenance, predictive maintenance has been utilized in the industrial world since the 1990s.

Yet, in reality, predictive maintenance is much older, although its history is not formally documented. According to Control Engineering, “The start of predictive maintenance (PdM) may have been when a mechanic first put his ear to the handle of a screwdriver, touched the other end to a machine, and pronounced that it sounded like a bearing was going bad.”

The goal of predictive maintenance is the ability to first predict when equipment failure could occur (based on certain factors), followed by preventing the failure through regularly scheduled and corrective maintenance.

Predictive maintenance cannot exist without condition monitoring, which is defined as the continuous monitoring of machines during process conditions to ensure the optimal use of machines. There are three facets of condition monitoring: online, periodic and remote. Online condition monitoring is defined as the continuous monitoring of machines or production processes, with data collected on critical speeds and changing spindle positions (“Condition Monitoring of Rotating Machines,” Istec International). https://www.reliableplant.com/Read/12495/preventive-predictive-maintenance
Flares, including open-tip and enclosed combustion systems, are a safety device at many oil and gas operations that are used to control emissions of gas that would otherwise be emitted to atmosphere. Flaring is the controlled burning of natural gas including associated gas in the course of oil and gas operations. An intentional, controlled burning of natural gas that takes place during production and processing. Gas is ignited at the top of a flare stack, creating a characteristic flame. A gas flare, also known as a flare stack, is a gas combustion device used in industrial plants (i.e. petroleum refineries), chemical plants, natural gas processing plants, landfills and at oil and gas production sites, both offshore and onshore. Combustible gases are flared most often due to emergency relief, overpressure, process upsets, startups, shutdowns, and other operational safety reasons. Unplanned flaring happens when an unexpected gas volume has to be addressed as a safety issue. Planned flaring happens when the pipeline infrastructure to economically transport the natural gas to market doesn’t exist. Natural gas that is uneconomical for sale is also flared. Often natural gas is flared as a result of the unavailability of a method for transporting such gas to markets. The gases are piped to a remote, usually elevated, location and burned in an open flame in the open air using a specially designed burner tip, auxiliary fuel, and steam or air. [https://www.eia.gov/tools/glossary/index.php?id=F]

In many cases, the volume of gas sent to flares is metered or can be calculated from known production parameters, like gas-to-oil ratio. The combustion efficiency of a well-designed and operated flare is generally assumed to be greater than 98%, meaning less than 2% of the gas passes through the flare stack unburnt. This is referred to as slip. For an unlit flare, parametric information about the pilot light status, such as a thermocouple or flame scanner, or other operational data like a visual report from the last site inspection can be used to determine the duration of an unlit flare event. At the individual flare level, local parameters, such as gas content and quality, flare design, flow rates, exit velocities and steam use contribute to the overall combustion efficiency. There are currently no straightforward methods to continuously measure or monitor the actual combustion efficiency or destruction and removal efficiency of a flare.

The practice of flaring has resulted in the burning of large quantities of gas with the release of large amounts of carbon dioxide together with sulfur dioxide and nitrous oxide, which have contributed substantially to atmospheric pollution. In order to better understand the scale of the problem, it is sufficient to observe nocturnal images of Earth from space; the gas flaring activity in regions corresponding to the major petroleum-producing areas are a proof that cannot go unnoticed.

Routine flaring is the flaring of gas during normal oil production operations in the absence of sufficient facilities or amenable geology to reinject the produced gas, utilize it onsite or dispatch it to a market.

Routine venting - Routine venting refers to the intentional release of natural gas into the atmosphere from oil and natural gas equipment. This equipment includes (but is not limited to) pneumatic devices, glycol dehydrators, compressor seals, casing vents, and atmospheric tanks.

NOPEs – Normal Operating Process Emissions

Flare Management refers to the process of determining the quantity and energy value of flare gas generated within chemical plants, refineries, power plants and oil & gas fields. Flare gas measurement is subject to national and regional environmental regulations and is used for the assessment of environmental taxes and determining the quantity of hydrocarbons and other hazardous gases. This measurement is used to prove regulatory compliance. The responsible authorities assess fines to those facilities exceeding regulated volumes which very widely across state and even sometimes county lines. Because of this new visibility and pressure, producers have a very practical incentive to measure flare emissions as demonstrably accurate as possible, across the volumetric range potential of their applications, and being able to verifyably report those results to the appropriate authorities as required.
Incinerator or enclosed combustor - Flares are not 100% efficient, and some methane (un-combusted) is emitted during flaring as a result of un-combusted gas being released via the equipment exhaust stream. Flares cannot be performance tested to guarantee that they achieve the same efficiency as an incinerator or enclosed combustor. Studies suggest that the efficiency of a flare during windy conditions can be as low as 50%. The many components and complex network of small gathering lines in flare are a source of fugitive emissions.

Incinerators are used when flaring is not a viable option. The combustion efficiency of an incinerator is known to be over 99% which is higher than a flare. Plus, they are more suitable for applications involving carcinogenic gases like BTEX and H2S applications. Incineration of waste gas products may not be a new concept for the oil and gas industry however, in recent years the design and technology have resulted in optimal performance, increased reliability and reduce capital and operating costs for operators.

An enclosed combustor is a newer iteration of the incinerator. The combustion device is completely enclosed except for the combustion air intake and the exhaust discharge. It operates like an incinerator with more restriction to allow it to be able to operate in a reduced spacing capacity. The surfaces exposed to the atmosphere operate below the temperature that would ignite a flammable substance present in the surrounding area. Because of the reduced space capacity all air intakes must be equipped with a flame arresting device as a safety feature to allow the unit to be 10 meters away from wells or operating equipment. https://energynew.com/2021/07/the-differences-between-flares-incinerators-and-enclosed-combustors/

Natural gas venting and leaks are the discharge of unburned gases into the atmosphere, often carried out in to maintain safe conditions during the different phases of the treatment process. During venting operations methane, carbon dioxide, volatile organic compounds, sulfur compounds and gas impurities are released. In many cases gases that are being vented could be flared. Flaring (combustion) oxidizes methane into CO2 and water vapor which have a smaller short term environmental impact. Methane has more than 80 times the warming impact of carbon dioxide over the first 20 years after it reaches the atmosphere.

Currently, the above-mentioned practices (flaring and venting) are subject to strong restrictions, both for economic (the gas produced could be sold and consumed rather than wasted) but especially for environmental reasons. Under the Kyoto Protocol, there are incentives for the construction of plants that have minimum environmental impact and which, at the same time, do not waste precious resources.

In more developed countries, this practice has been almost totally abandoned because it is a waste of an important resource and the infrastructures required to utilize the gas in situ are not difficult to implement. On the contrary, in many developing countries the gas is often not required at the production site and the costs of transportation are very high. For this reason, there are incentives to implement practices that are more feasible and less costly such as, for example, natural gas reinjection into the reservoir to increase its pressure and consequently its efficiency, small-scale natural gas liquefaction plants on the production site, the generation of electricity in situ, the distribution of natural gas to neighboring urban areas, its use for transportation, etc. while costly operations, such as the construction of pipelines, are carried out only when the natural gas extracted justifies the high costs. www.cniscuola.net/argomento/natural-gas1/environment-and-territory1/gas-flaring-and-gas-venting/
The flaring intensity in most of the Permian basin drops from about 5% to 1.6% in the fourth quarter of 2020 - the lowest level for eight years. The huge drop is attributed first, to stalled production of oil and gas for several months during which time the price of oil dropped to zero.

In 2021, the IEA reduced its estimate of average flaring efficiency to from 98 per cent to 92 per cent, which meant that flaring resulted in emissions of more than 500 MT CO2e in 2020.60 Satellite data from Captrio's FlareIntel Portal suggests that for individual countries, the combustion rate for flares may be closer to 90 per cent.61 If 8–10 per cent of flared gas is vented methane, this results in a much higher level of equivalent carbon dioxide emissions.

The Colorado Oil and Gas Conservation Commission (COGCC) has voted to adopt new rules to eliminate the practice of routine flaring at new and existing wells across the state. The rules will be formally adopted after a procedural vote. Routine flaring occurs when operators burn off natural gas produced from oil wells instead of capturing it and selling it or otherwise putting it to beneficial use. Operators in Colorado currently waste nearly $12 million worth of natural gas annually through venting and flaring, resulting in hazardous air and climate pollution.

This move makes Colorado the first in the lower 48 to put a stop to the practice of routine flaring, and comes as other oil and gas producing states such as New Mexico and Texas face increasing pressure from investors and companies to zero out routine flaring, while recent surveys have found flaring to be an outsized source of climate-warming methane emissions.

Leaks versus Vents - While definitions vary across regulatory jurisdictions, emissions are categorized as leaks if they were a result of component malfunction or emissions from equipment with control devices. Vents, on the other hand, include pneumatic devices in normal operations, open-ended lines, abnormal emissions from...
vent sources (e.g. open thief hatches from an uncontrolled tank battery) and other equipment that emit methane by design. (Large-Scale Controlled Experiment Demonstrates Effectiveness of Methane Leak Detection and Repair Programs at Oil and Gas Facilities, Wang, Barlow, Funk, Robinson, Brandt and Ravikumar, 2020)

Emissions from leak sources can be addressed through maintenance programs. Emissions from vent sources must be addressed through different facility designs. Leaks can come from either operational causes or fugitive causes:

Operational (or routine) emissions - Some flaring and emissions are essential for safety and maintenance reasons, particularly at the start of operations, during repair or in sudden shutdowns. Here the solutions are better design, process optimization or equipment upgrades. But the more important problem globally is routine flaring and super-emitter sites. That means burning off gas that is found when drilling for oil rather than using, reinjecting, or selling it – and it points to the crux of the issue which is a lack of infrastructure, regulations, markets, and incentives. When these are not in place, it is far simpler and cheaper to flare the gas – or even worse, vent it – than find a way to use or sell it. https://www.oecd.com/talking-transition-putting-a-stop-to-flaring/

Fugitive (or non-routine) emissions are leaks and other irregular releases of gases or vapors from a pressurized containment - such as appliances, storage tanks, pipelines, wells, or other pieces of equipment - mostly from industrial activities. In addition to the economic cost of lost commodities, fugitive emissions contribute to local air pollution and may cause further environmental harm. Common industrial gases include refrigerants and natural gas, while less common examples are perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride.

Most occurrences of fugitive emissions are small, of no immediate impact, and difficult to detect. Nevertheless, due to rapidly expanding activity, even the most strictly regulated gases have accumulated outside of industrial workings to reach measurable levels globally. Fugitive emissions include many poorly understood pathways by which the most potent and long-lived ozone depleting substances and greenhouse gases enter Earth's atmosphere.

- **Blowdown** - The release of gas from processing equipment or pipelines to the atmosphere to relieve pressure so that maintenance, testing or other activities can take place.
- **Breathing** - Losses occur when thermal expansion causes more gases to evolve and be pushed out of the tank. Tanks can be either uncontrolled and emitting to atmosphere due to these losses or can be controlled with a combustion device or a vapor recovery unit.
- **Flashing** - Venting that occurs in a storage tank when the pressure of liquid with entrained gas drops and lighter compounds dissolved in the liquid are released/vented off. Flashing occurs due to the pressure reduction between the tank and the vessel upstream of it in the process, such as a separator, and if often estimated from process simulation tools based on the localized liquid composition.
- **Flash Gas** – the gas that is released from a pressurized hydrocarbon liquid during depressurization, remains one of the most substantial sources of fugitive GHG and VOC emissions at onshore production sites. Flash Gas emissions remain some of the most complicated to quantify. Compositional analysis of pressurized hydrocarbon liquids are key data sets used to characterize flash gas properties such as gas-to-oil ratio in process simulation models.
- **Surface casing vent flow (SCVF)** - A condition where fluid or gas is flowing from the surface casing vent assembly. This term is typically used in conjunction with land wells.
Well unloading - To initiate flow from a reservoir by removing the column of kill fluid from the wellbore. Several methods of unloading the well are used, including circulation of lower density fluid, nitrogen lifting and swabbing. The method used will depend on the completion design, reservoir characteristics and local availability. https://glossary.oilfield.slb.com/en/Terms/u/unload.aspx

Methane slip is an event whereby gaseous methane escapes into the atmosphere. This can happen anytime methane is stored, transported, or used. As awareness has grown about methane's feasibility as a greener fuel for the energy transition, so has the attention on methane slip. Even small amounts of methane can be of particular environmental concern due to methane’s potency as a greenhouse gas.

Non-routine Venting - Upset, emergency, or intermittent venting of hydrocarbon emissions. This could include emergency process evacuation events.

Fugitive Emissions Management Program (FEMP) - A program that is intended to complement a duty holder's overall emissions reduction strategy by establishing a plan and supporting systems to systematically detect and manage fugitive emissions. This plan includes the systematic detection and repair of leaks, malfunctioning equipment, and surface casing vent flows. Detection of these leaks relies on regular surveys or screenings of sites for fugitive emissions. The term FEMP is characteristic of Western Canada. In the U.S. and elsewhere, the term 'LDAR Program' is often used.

Setback Distance - A setback is the absolute minimum distance that must be maintained between any energy facility (for example, a drilling or producing well, a pipeline, or a gas plant) and a dwelling, rural housing development, urban center, or public facility. Setbacks vary according to the type of development and whether the well, facility, or pipeline contains sour gas. Setbacks prevent populated areas from developing too close to energy facilities and energy facilities from getting too close to people. In other words, setbacks provide a buffer zone between the public and the facility if there is a problem. https://www.aer.ca/providing-information/news-and-resources/enerfaqs-and-fact-sheets/enerfaqs-setbacks

Well Classification

A classification of exploratory wells was established by the late Frederic H. Lahee in 1944, and has been used since then by AAPG-CSD and API. The classes were designed to characterize a well by the general degree of risk assumed by the operator. Of the 5 exploratory classes, the new-field wildcat represents the highest level of risk and the outpost (extension) represents the lowest risk. A well classed as a development well is lower in risk than any of the exploratory wells. Only a small percent of the total wells changes classes between the initial class and the final class. An example would be a well with an initial class of development that did not find expected production and was completed instead as a water-injection well. Its final class, therefore, would be service.
Shut-in The oil or gas well still has capacity, but it is not being produced/extracted. Oil producers sometimes shut-in wells for safety reasons, but by far the most common reason for 'shutting-in' a well is because the cost of extracting the oil or gas is higher than the current market price for the commodity. The state of Colorado Oil and Gas commission defines a shut-in well as a well which is capable of producing but is not presently producing. Reasons for a well-being shut-in may be lack of equipment, market or other.
Abandoned Well Definition depends on jurisdiction. In Canada, abandoned wells have been plugged but where the site has not been fully reclaimed (similar to a plugged well in the United States). In the U.S., abandoned wells are unproductive wells with a known operator but are often confused with orphaned wells. Due to the confusion and multiple definitions, we recommend avoiding use of the term ‘abandoned’ unless in a specific regulatory context.

Recent studies have investigated methane leakage from abandoned wells in the U.S. The term "abandoned wells" as typically used in published scientific articles and this memo encompasses various types of wells:

- Wells with no recent production, and not plugged. Common terms (such as those used in state databases) might include: inactive, temporarily abandoned, shut-in, dormant, idle.
- Wells with no recent production and no responsible operator. Common terms might include: orphaned, deserted, long-term idle, abandoned.
- Wells that have been plugged to prevent migration of gas or fluids.

Emissions from abandoned oil and gas wells were not included in previous GHGIs. Commenters on previous GHGIs supported including this source, but noted that the current data were limited, and suggested reviewing data that will become available in the future. https://www.epa.gov/sites/default/files/2018-04/documents/ghgemissions_abandoned_wells.pdf

According to a recent paper from Stuart Riddick from the CSU Energy Institute uses this classification method: “The term abandoned describes a range of well types including: 1) wells with no recent production, and not plugged (inactive, temporarily abandoned, shut-in, dormant, idle); 2) wells with no recent production and no responsible operator (orphaned, deserted, long-term idle); and 3) well that have been plugged to prevent migration of gas or fluids.”

“Methane Emissions from Abandoned Oil and Gas Wells in Colorado,” Riddick, Mbua, Santos, Emmerson, Cheptonui. Hartzell and Zimmerle, 2023

Another proposed classification system divides well status into the following four categories:
Active - e.g. A well that is open to source or completed interval and is performing its intended function

Shut-in - e.g. Source or completed interval is open to tubing or casing. Utility is restored by opening valves or energizing equipment, i.e. barriers/pressure containment at surface

Suspended - e.g. Source or completed interval is temporarily isolated by verified barriers. Utility is restored by removal of barriers, i.e. barriers/pressure containment subsurface and wellhead in place

Abandoned - e.g. Source or completed interval permanently isolated to prevent any unintended/undesired (subsurface) fluid migration between permeable zones and loss of containment to the (surface) environment using validated well barriers, i.e. no means to access/monitor well, wellhead has been removed.

https://energy.colostate.edu/colorado-orphaned-and-abandoned-wells-study/

Well Integrity

Attempts at creating naming standards for well status include the NORSOK D-010 committee (https://www.oilfieldtechnology.com/exploration/10032014/the_story_of_the_worlds_well_integrity_stand ard/) who established a well integrity standard for wells in offshore Norway which led to the creation of the ISO 16530-1 standard (https://www.iso.org/obp/ui/#iso:std:iso:16530:-1:ed-1:v1:en).
Barrier Terminology

Reclaimed - A site that has been fully reclaimed, including any wells plugged, topsoil replaced if needed, and vegetation re-established.

Remediation - The process by which soil contaminants are managed and removed, and the site is readied for reclamation. In Alberta, this is done following AER and AEP requirements, in the US the work...
will follow state or federal standards. Contaminated soil may be hauled to a landfill and then replaced with clean soil, or may be treated onsite until it meets regulatory guidelines.

Site restoration – removal of equipment, trash and debris; repair of erosion; removal of hydrocarbons and closure of pits; and associated activities (IOGCC, 2019, Idle and orphan oil and gas wells: State and provincial regulatory strategies. https://iogcc.ok.gov/publications)

Surety Bond - A surety bond is a legally binding contract entered into by three parties: the principal, the obligee, and the surety. The obligee, usually a government entity, requires the principal, typically a business owner or contractor, to obtain a surety bond as a guarantee against future work performance. **Plugging and abandonment bonds** – These surety bonds protect the public by guaranteeing that wells will be properly plugged and sealed at the end of their use. They provide assurances for the cost of cleaning up abandoned wells if not plugged by the bond Principal.

Pneumatic control Valves A control valve is used in the oil and gas industry to regulate the flow rate of the fluid in a pipeline or process (and the related process parameters as pressure, temperature, and level) according to signals managed by a controller. An automated instrument used for maintaining a process condition such as liquid level, pressure, delta-pressure and temperature.

Instrument air - Air that is used to supply pneumatic devices.

Instrument gas - Natural gas that is used to supply pneumatic devices.

What kind of valves are used in oil pipelines?

Actuated: The valve is actioned via electromechanical devices, called actuators, that may be electric, pneumatic, hydraulic and gas over oil **GATE VALVE**: This type is the most used in piping and pipeline applications. Gate valves are linear motion devices used open and close the flow of the fluid (shutoff valve).

A pneumatic controller means an automated instrument used for maintaining a process condition such as liquid level, pressure, pressure difference and temperature. Based on the source of power, two types of pneumatic controllers are used:
• Natural gas-driven pneumatic controller means a pneumatic controller powered by pressurized natural gas.

• Non-natural gas-driven pneumatic controller means an instrument that is actuated using other sources of power than pressurized natural gas; examples include solar, electric, and instrument air.

Natural gas-driven pneumatic controllers come in a variety of designs for a variety of uses. For the purposes of this Glossary, they are characterized primarily by their emissions characteristics:

Pneumatic Controllers - Pneumatic controllers are a type of pneumatic instrument used on oil and gas sites. They control conditions such as temperature, pressure, and fluid levels.

![Pneumatic Control System Diagram]

Pneumatic instrument - Oilfield equipment powered through pressurized gas (either air or natural gas). They are frequently used when there is no electricity available on a site, and are a known source of methane emissions. Pneumatic instruments are often designed to vent gas with every cycle of their operation, referred to as “bleeding”.

Pneumatic pump - Pneumatic pumps are a type of pneumatic instrument. They are used to inject chemicals (such as methanol) into wells and pipelines, or circulate fluids.

Continuous bleed pneumatic controllers are those with a continuous flow of pneumatic supply gas to the process control device (e.g., level control, temperature control, pressure control) where the supply gas pressure is modulated by the process condition, and then flows to the valve controller where the signal is compared with the process setpoint to adjust gas pressure in the valve actuator. For the purposes of this glossary, continuous bleed controllers are further subdivided into two types based on their bleed rate:

- Low bleed, having a bleed rate of less than or equal to 6 standard cubic feet per hour (scfh).
- High bleed, having a bleed rate of greater than 6 scfh.

Intermittent pneumatic controller means a pneumatic controller that vents non-continuously. These natural gas-driven pneumatic controllers do not have a continuous bleed, but are actuated using pressurized natural gas.

Concept of a single loop-controlled vs cascade-controlled tank - To better understand the architecture and benefits of Cascade Control it can help to consider it in the context of an industrial process. Shown on the right is a tank system. A shared header supporting multiple lines allows liquid to flow into the tank. Liquid simultaneously exits through a port at the bottom. Using Single Loop Control the tank level is controlled by adjusting a valve and either increasing or decreasing the rate of fluid that flows into the tank. Whereas the exit stream is predictable, the inlet stream from the header can vary dramatically due to changes in pressure associated with demand from other lines. Due to the process’ dynamics the level controller may be unable to respond adequately to such changes in liquid feed. The slow response can result in a level – whether too high or too low – that is either inefficient or even dangerous.

Now consider a similar tank system that employs the cascade control architecture. As before the control objective is to maintain level within the tank. However, a second control loop is effectively “nested” within the architecture outlined above to improve control. Here a secondary flow controller is added that uses the controller output of the level controller as its Set Point. As level shifts within the tank the slower level controller establishes a new Set Point for the faster responding flow controller. Because the flow loop is closer to the disturbance it both experiences and rejects any pressure disturbances before they can have an appreciable impact on the tank’s level.
In order to implement cascade control, it is necessary for the process to have access to a secondary control loop that directly influences the primary loop. What's more, the dynamics of that secondary loop must be notably faster than the primary loop—a minimum of 3-5 times faster to be precise. The direct influence and faster speed assure that the secondary loop can readily apply a corrective action capable of minimizing the effects of a disturbance. In the example provided, the liquid header flow satisfied both criteria.

While the Cascade Control architecture involves only a single Final Control Element, it does require use of a second sensor and a second PID controller. The added investment in those assets along with the time to configure and tune the controllers represent the sum of the costs. On the other side of the ledger, the benefits are measured in terms of performance gains and the associated economic value.

https://controlstation.com/blog/overview-cascade-control/

Pressure relief valve - A pressure relief valve (PRV) is a safety mechanism used to help regulate the pressure in a system. Pressure relief valves are a leading cause of emissions from hydrocarbon storage tanks. As the pressure in these tanks rises, the valve may open, releasing pressure, and in turn, releasing natural gas into the atmosphere. In this sense, PRVs are a source of venting.

Thief Hatch - The purpose of the thief hatch is to work in tandem with the vent valve to minimize the escape of light ends of crude in lease storage tanks by maintaining a pressure on the tank. A vacuum relief function is also standard, the thief hatch permits access to the contents of the tank for sampling and gauging. The vent valve should be set to vent pressure before the thief hatch. https://jayco.org/products-category/jayco-thief-hatch/
Vapor Recovery Unit (VRU) - Vapor recovery is the process of collecting the vapors of gasoline and other fuels, so that they do not escape into the atmosphere. This is often done (and sometimes required by law) at filling stations, to reduce noxious and potentially explosive fumes and pollution. A Vapor Recovery Unit is an engineered compression package, which aims to lower emissions levels coming from the vapors of gasoline or other fuels while recovering valuable hydrocarbons to be sold or reused as fuel onsite. A package for vapor recovery is designed to capture about 95% of Btu-rich vapors, generating many benefits, guaranteeing less air pollution, and recovering gasoline vapors to be used as fuel. [https://www.gardnerdenver.com/en-us/garo/applications/vapor-recovery-units#:~:text=What%20Are%20Vapor%20Recovery%20Units%20%28VRU%E2%80%99s%29%3F%20A%20Vapor%20Recovery%20Unit%20is%20often%20used%20to%20compress%20and%20recover%20the%20vapors%20for%20return%20to%20the%20process%20or%20collection%20for%20sale. Vapor recovery can help oil and gas production companies earn additional revenue through the sale of the recovered vapors and simultaneously meet EPA clean air act requirements. Vapor recovery can help oil and gas production companies earn additional revenue through the sale of the recovered vapors and simultaneously meet EPA clean air act requirements. Currently between 7,000 and 9,000 VRU’s are installed in the oil and gas sector with an average of four tanks per recovery unit (EPA, October 2006). [https://www.wika.us/solutions_vapor_recovery_oil_and_gas_en.us.WIKA]
Separator - The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. Separators include related process control components, like pneumatic controllers, and may contain a heater to enhance phase separation or prevent freezing during cold weather. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel (Knockout drum, knockout trap, water knockout, or liquid knockout), Flash chamber (flash vessel or flash trap), Expansion separator or expansion vessel, Scrubber (gas scrubber), Filter (gas filter). These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas.

Wellhead choke – is a device with an orifice installed at the wellhead to control the flow of fluids produced from the well. The size (diameter of the orifice) and working condition of a wellhead choke influence the production rate or hydrocarbons from a well. It also impacts the lifespan of the producing reservoir as well as the surface facilities.

Artificial Lift - Artificial lift is a process used on oil wells to increase pressure within the reservoir and encourage oil to the surface. When the natural drive energy of the reservoir is not strong enough to push the oil to the surface, artificial lift is employed to recover more production. While some wells contain enough pressure for oil to rise to the surface without stimulation, most don’t, requiring artificial lift. In fact, 96% of the oil wells in the US require artificial lift from the very beginning. Even those wells that initially possess natural flow to the surface, that pressure depletes over time, and artificial lift is then required. Therefore, artificial lift is generally performed on all wells at some time during their production life. Although there are several methods to achieve artificial lift, the two main categories of artificial lift include pumping systems and gas lifts.
The most common type of artificial lift pump system applied is beam pumping, which engages equipment on and below the surface to increase pressure and push oil to the surface. Consisting of a sucker rod string and a sucker rod pump, beam pumps are the familiar jack pumps seen on onshore oil wells. Above the surface, the beam pumping system rocks back and forth. This is connected to a string of rods called the sucker rods, which plunge down into the wellbore. The sucker rods are connected to the sucker rod pump, which is installed as a part of the tubing string near the bottom of the well. As the beam pumping system rocks back and forth, this operates the rod string, sucker rod and sucker rod pump, which works similarly to pistons inside a cylinder. The sucker rod pump lifts the oil from the reservoir through the well to the surface.

Another artificial lift pumping system, hydraulic pumping equipment applies a downhole hydraulic pump, rather than sucker rods, which lift oil to the surface. Here, the production is forced against the pistons, causing pressure and the pistons to lift the fluids to the surface. Similar to the physics applied in waterwheels powering old-fashion gristmills, the natural energy within the well is put to work to raise the production to the surface.

Electric submersible pump systems employ a centrifugal pump below the level of the reservoir fluids. Connected to a long electric motor, the pump is composed of several impellers, or blades, that move the fluids within the well. The whole system is installed at the bottom of the tubing string. An electric cable runs the length of the well, connecting the pump to a surface source of electricity.
An emerging method of artificial lift, gas lift injects compressed gas into the well to reestablish pressure, making it produce. Even when a well is flowing without artificial lift, it many times is using a natural form of gas lift. The injected gas reduces the pressure on the bottom of the well by decreasing the viscosity of the fluids in the well. This, in turn, encourages the fluids to flow more easily to the surface. Typically, the gas that is injected is recycled gas produced from the well.

In the US, the majority of wells, 82%, employ a beam pump. Ten percent use gas lift, 4% use electric submersible pumps, and 2% use hydraulic pumps.

Compressor Stations: Used in midstream gas processing and natural gas transportation applications. The pipeline needs to take low volume/low pressure natural gas from the well head and compress the gas to fit into pipeline specs and get the gas to flow down the pipeline.
Compressors used in natural gas transportation system are either positive displacement type or centrifugal type. Positive displacement compressors generate the pressure required by trapping a certain volume of gas within the compressor and increasing the pressure by reduction of volume. The high-pressure gas is then released through the discharge valve into the pipeline. Piston-operated reciprocating compressors fall within the category of positive displacement compressors. These compressors have a fixed volume and are able to produce high compression ratios. Centrifugal compressors, on the other hand, develop the pressure required by the centrifugal force resulting from rotation of the compressor wheel that translates the kinetic energy into pressure energy of the gas. Centrifugal compressors are more commonly used in gas transmission systems because of their flexibility. Centrifugal compressors have lower capital cost and lower maintenance expenses. They can handle larger volumes within a small area compared with positive displacement compressors. They also operate at high speeds and are of balanced construction. However, centrifugal compressors have less efficiency than positive displacement compressors. “Compressor Stations”, E. Shashi Menon, in Transmission Pipeline Calculations and Simulations Manual, 2015

Reciprocating Compressor (or Piston Compressor): The piston compressor, also denoted reciprocating, is a displacement compressor type which consists of a moving piston which compresses the air. It has high efficiency both at full and partial loads, but less positive aspects are that it is noisy and moreover, demands more space than other types of compressors. Also, due to many moving parts in this type of compressor that may wear out, the cost of maintenance is higher than for other compressor types. Piston compressors can come both as oil lubricant free as well as oil lubricant injected compressors.

“Energy efficiency in compressed air, ventilation, and lighting”, Patrik Thollander, ... Jakob Rosenqvist, in Introduction to Industrial Energy Efficiency, 2020
3. Emission measurement technology

Abatement - The use of technologies and operational practices to directly reduce emissions from oil and natural gas systems.

Activity Factor - The population of emitting equipment. For example, activity factor could refer to the mileage of natural gas pipeline, the count of chief hatches on a facility or the mechanical power of gas turbines.

Aggregated Data - Emissions data that has been collected from multiple sources and summarized, usually for the purpose of reporting or statistical analysis.

Anemometer - The definition of an anemometer is an instrument that measures the force and speed of wind. A laser doppler is an example of an anemometer. (meteorology) An instrument for measuring and recording the speed of the wind. An instrument that measures the speed of the wind or of another flowing fluid. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti in 1450.

AVO - Audio, visual, and olfactory (AVO) is a methane detection survey performed using human senses. Regulations often have some form of AVO requirement that is equipment or site specific.

Flux - Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property.

Measurement - Acquiring emissions data directly from the environment at a specific place and time

 - **Continuous measurement** - Methane detection technology installed at a facility to provide repeated emissions measurements at high temporal resolution. Typical continuous measurement technologies may acquire measurements multiple times per second or multiple times per day.

 - **Bottom-up Measurement** - A measurement that occurs at a granular scale (e.g., component) that is used to estimate emissions more broadly. Bottom-up measurements are often averaged into emissions factors and combined with activity factors to build a bottom-up inventory.

 - **Top-Down Measurement** - Methane measurements taken at spatial scales greater than the equipment scale. Typical top-down measurement scales include site, region and basin. In the production segment, net emissions from a spatially distinct set of equipment, such as a well-pad, a compressor station, or a central processing facility, or from a set of such facilities. Top-down measurements can also include linear assets such as pipelines, when a pipeline is examined.

Plume - A body of one fluid (natural gas/methane) moving through another (ambient air). In hydrodynamics, a plume or a column is a vertical body of one fluid moving through another. Several effects control the motion of the fluid, including momentum (inertia), diffusion and buoyancy (density differences). Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively.

Aerial Mass Balance - In physics, a mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique. The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e., that matter cannot disappear or be created spontaneously. Therefore, mass balances are used widely in engineering and environmental analyses. For example, mass balance theory is used to design chemical reactors, to analyse alternative processes to produce chemicals, as well as to
model pollution dispersion and other processes of physical systems. In environmental monitoring, the term budget calculations is used to describe mass balance equations where they are used to evaluate the monitoring data (comparing input and output, etc.).

Bottom-up inventory – Method based on engineering calculations, manufacturer data and emissions factors for emissions sources/activities and corresponding activities factors. Emissions calculations and factors sometimes including individual source measurements, compiled to develop an account of emissions discharged to the atmosphere from an asset (e.g. a compressor station) or a geographic area (e.g. basin, state, region).

A list of emission sources by category and quantity. Often refers to an aggregate emission rate estimate achieved by multiplying activity factors (counts of components, equipment, or throughput) by emission factors (estimates of gas-loss rates per unit of activity). Most bottom-up inventories use emission factors derived from industry averages rather than measurements specific to the company. Bottom-up inventory emission rate estimates are consistently lower than site-level and regional emissions measurements in academic research.

Bottom-up inventory quantification methodology - Documentation of facility specific details, such as facility process operations, production, and emissions calculations used during a reporting period.

Component - In emissions attribution, a component is the smallest scale of oil and gas infrastructure. Examples include valves, flanges, and threaded connections. Multiple components comprise equipment (e.g., tanks, separators) and a site may have multiple pieces of equipment or equipment groups.

Comprehensive Monitoring Program - A methane monitoring program that combines screening methods with close-range methods, to diagnose and precisely pinpoint leaking components.

Controlled Release - Intentional releases of methane at a known location and rate used to test the performance of methane detection and quantification technology. Colorado State University's METEC facility near Fort Collins, CO is a well-known testing facility.

Design Emissions - Emissions associated with a piece of equipment or facility under normal operations (operating at design conditions). Includes vented emissions and emissions from incomplete combustion.

Detection - A determination that a source may be present. Typically requires on analysis of one or a series of measured anomalies. Detections can be defined in terms of magnitude and/or duration of elevated mixing ratio or emission rate. For example, a detection event could be defined as an anomaly that reaches an estimated mass emission rate of 5 standard deviations above a 24-hour baseline. Unlike an anomaly, a detection is intended to lead to a further action, e.g., follow-up and/or root-cause analysis.

Detection threshold – The minimum quantity or concentration of a gas (e.g. methane) that is reliably detectable by detection equipment. This is sometimes called the minimum detection limit. Detection limits can vary based on the type of technology selected as well as the conditions during the measurement period. Probability of detection is a preferred concept because the minimum is context dependent.

Minimum Detection Limit – The highest flow rate at which a measurement technology is required to detect emissions with 90% probability. Technology with a higher MDL is less sensitive than technology with lower MDL. The MDL is also referred to as the minimum detection threshold. The smallest atmospheric concentration or emission rate that a measurement method capable of discerning above background.

Reconciliation – Combining top-down measurements with a bottom-up inventory into an improved emissions estimate. Greenhouse gas emissions can be estimated using emissions factors, measurements, or engineering equations at various spatial and temporal scales. Reconciliation explores whether and why different estimation approaches vary. In some cases, reconciliation can be defined as a methodology for combining multiple different estimates into a single stronger estimate. Greenhouse gas emissions can be estimated using
emissions factors, measurements, or engineering equations at various spatial and temporal scales. Reconciliation explores whether and why different estimation approaches vary. In some cases, reconciliation can be defined as a methodology for combining multiple different estimates into a single stronger estimate.

Single Blind Field Test - of, relating to, or being an experimental procedure in which the experimenters but not the subjects know the makeup of the test and control groups during the actual course of the experiments.

Double Blind Field Test - of, relating to, or being an experimental procedure in which neither the subjects nor the experimenters know which subjects are in the test and control groups during the actual course of the experiments.

Site-Level Measurements – Methane measurements of the entirety of emissions from individual sites. This can be based on non-continuous “snapshot” technology approaches, which take a measurement at a discrete moment in time and does not automatically repeat at a high frequency: continuous monitoring technologies: or a combination of both.

Measurement-based Inventory – An inventory that contains data from direct site-level measurements of the asset in the inventory. Traditional bottom-up inventories are often not based on site-level measurements but on emissions factors and equipment counts. Examples of site-level measurements are determination of a single total emission rate for an entire site, such as a compressor station, a well pad, or a central production facility.

A matching procedure can be implemented by the test center to pair reported detection data with controlled release data, and to classify each as:

- **True Positive (TP)** - a controlled release and reported detection which were paired.
- **False Negative (FN)** - a controlled release which remained unpaired
- **False Positive (FP)** - a reported detection which remained unpaired.

Continuous Monitoring solutions – A site level detection system that uses autonomous fixed-point monitors to measure ambient air concentrations of methane on the site in order to detect elevated levels of methane emissions. Such a system often includes fixed location monitors that may detect in a highly frequent (nearly continuous) fashion. A CM system operates to provide alerts and may or may not have any rate quantification estimates.

Point sensor network: Solution based upon one or more concentration sensors that each sense either methane or hydrocarbons at one point. Analytics combine concentration time series with meteorological data to develop detections.

Scanning/imaging: Solution used a scanning laser - typically LIDAR - or a camera to create 2D images of a portion of the test facility. Analytics combine images (typically a video sequence) with meteorological data to develop detections.

Equipment leak detection is the process of identifying emissions from equipment, components and other points by screening for and detecting fugitive emissions. A screening device may be used to screen a wide area to detect the presence of fugitive methane or vented methane, and a detection device can be used to identify a specific fugitive or vented source of leak. Most detection and screening instruments and devices (particularly handheld devices) do not quantify the volume or mass of emissions.

LDAR – Leak Detection and Repair Leak detection and repair (LDAR) refers to U.S. Environmental Protection Agency regulations designed to help reduce volatile organic compounds (VOC) and volatile
hazardous air pollutants (VHAP). Leak Detection and Repair is a work practice designed to identify leaking equipment so that emissions can be reduced through repairs. A component that is subject to LDAR requirements must be monitored at specified, regular intervals to determine whether it is leaking. Any leaking component must then be repaired or replaced within a specified time frame. Current regulatory programs require that companies, especially those in petroleum and chemical industries, follow strict LDAR compliance procedures. Its purpose is to reduce and eliminate unintended emissions of liquids and gases. This practice is essential for plants that work with oil, gas, and chemicals. These companies are required by law to implement a thorough LDAR program.

LDAR is particularly concerned with volatile organic compounds (VOC) and volatile hazardous air pollutants (VHAP). By identifying and repairing leaks, companies can promote safety in the workplace, while reducing product losses. These processes can also contribute to environmental efforts by mitigating the release of harmful substances. LDAR technologies include: a gas sensing instrument, optionally configured with a deployment platform and/or ancillary instruments (e.g. anemometers, positioning), that can be used to gather data on emissions.

At operating facilities, emissions consist of non-fugitive emissions, i.e. planned emissions from venting or combusting sources, and unplanned fugitive emissions, caused by process or component failure. The task of the LDAR program is to alert the operator to fugitive emissions while ignoring non-fugitive emissions, which do not require the operator to dispatch personnel to the facility.

Specific steps on implementing an LDAR program may be specific to each company. Likewise, government regulations will vary across states. Whatever the circumstances are, LDAR programs have five elements in common.

1. **Identifying components**: Each component under the program is identified and assigned an ID. Its corresponding physical location is verified as well. As a best practice, components can be tracked using a barcoding system to be more accurately integrated with the CMMS (Computerized maintenance management system).

2. **Leak definition**: The parameters that define a leak should be clearly understood by relevant personnel. Definitions and thresholds must be well documented and communicated across the teams.

3. **Monitoring components**: Each identified component should be routinely monitored for signs of leaks. The frequency of checking, also called the monitoring interval, should be set accordingly.

4. **Repairing components**: Leaking components should be repaired within a set amount of time. The first repair attempt is ideally done within 5 days after the leak is detected. For delayed repair work due to any planned downtime, a documented explanation should be provided.

5. **Record keeping**: All tasks and activities that are performed and scheduled are recorded. Updating the activity status on the CMMS helps to keep track.

Thermal Imaging cameras - Infrared (IR) thermal imaging cameras are commonplace in the oil and gas industry. For years, companies have used them for several tasks such examining pipe integrity within process equipment. Recently, though, a highly specialized version of these cameras has made its way into the marketplace for a new application—the monitoring of volatile organic compounds (VOCs), such as methane, being vented into the atmosphere. Forward-looking infrared (FLIR) cameras are one common type of IR thermal imaging camera in use, https://jpt.spe.org/optical-gas-imaging-new-solution-methane-detection.
Screening - LDAR screening methods are used to rapidly flag high-emitting sites to direct close-range follow-up source diagnosis and root cause analysis. An example of a common screening method is an aerial monitoring campaign.

Performance Metric - A quantifiable metric describing an LDAR method's performance. Ideally, performance metrics are constrained with independent, single-blind controlled release testing. The most important performance metric is probability of detection which is commonly expressed as a probability curve or surface. Many other performance metrics exist, including localization and quantification uncertainty, false positive rate, and more.

LACT meter - Lease Automatic Custody Transfer Units, or LACT Units as they are commonly abbreviated are metering equipment designed to accurately gauge the volume and quality of crude oil as it changes custody from one party to another. LACT Units provide the means of correctly determining compensation, which makes them very important to both parties. A LACT Unit is only as good as the meters and parts which comprise it. Different types of LACT Units use different types of flowmeters to accurately measure the custody transfer of the crude oil. The type of meter the system uses will typically depend on a variety of characteristics and considerations about the well. A LACT Unit's flowmeter is a good fit for the particular well when it is designed to successfully overcome the primary hurdles at that well. https://setxind.com/upstream/a-closer-look-at-lact-unit-meters-and-components/

Gas Chromatography - Gas chromatography (GC) is an analytical technique used to separate and analyze samples that can be vaporized without thermal decomposition. Sometimes gas chromatography is known as gas-liquid partition chromatography (GLPC) or vapor-phase chromatography (VPC). Technically, GPLC is the most correct term, since the separation of components in this type of chromatography relies on differences in behavior between a flowing mobile gas phase and a stationary liquid phase. The instrument that performs gas chromatography is called a gas chromatograph. The resulting graph that shows the data is called a gas chromatogram.
GC is used as one test to help identify components of a liquid mixture and determine their relative concentration. It may also be used to separate and purity components of a mixture. Additionally, gas chromatography can be used to determine vapor pressure, heat of solution, and activity coefficients. Industries often use it to monitor processes to test for contamination or ensure a process is going as planned. Chromatography can test blood alcohol, drug purity, food purity, and essential oil quality. GC may be used on either organic or inorganic analytes, but the sample must be volatile. Ideally, the components of a sample should have different boiling points.

https://www.thoughtco.com/gas-chromatography-4138098

Optical gas imaging (OGI) - A common leak detection approach that uses thermal infrared cameras to visualize methane and various other organic gases. Common OGI cameras create images of a narrow range of the mid-IR spectrum (3.2–3.4 μm wavelength) which methane and other light hydrocarbons actively absorb.

Quantitative optical gas imaging (QOGI) - Combines optical gas imaging (OGI) camera technology with cross-section pixel absorption algorithms to quantify emissions. The brightness of each pixel seen through the OGI camera is proportional to the amount of infrared radiation incident on the camera along the corresponding line of sight through the plume. The brightness is converted to a concentration and combined with estimated velocities to obtain mass fluxes.

Other test method 33A (OTM 33A) - EPA OTM 33A uses fast response instruments mounted on ground-based vehicles for the geospatial measurement of air pollution (GMAP) near the driving route. Typically, the vehicle remains stationary for an extended period of time as the methane plume washes over it. Location and source emission rate are estimated.

LiDAR - Light detection and ranging (LiDAR) techniques use lasers to create 3D (topographic) or gas concentration (atmospheric) imagery of the surveyed environment. Both uses for LiDAR can be performed using either pulses of laser light (pulsed lasers) or laser light that stays on all the time (continuous-wave lasers). Bridger Photonics makes use of continuous-wave LiDAR to measure both solid surfaces (hard targets) and gases (soft targets).
Laser absorption spectrometry (LAS) - There is a range of methods called laser absorption spectroscopy, where laser light is used to precisely measure absorption features of substances. The purpose of such kinds of spectroscopy is frequently to find out details on such substances, but in other cases one utilizes known details of substances for other purposes. For example, laser absorption spectroscopy is often used for realizing optical frequency standards, e.g. by stabilizing the wavelengths of a laser to a precisely defined absorption transition.

Tunable Diode Laser Adsorption Spectroscopy (TDLAS) - Tunable diode laser absorption spectroscopy (TDLAS, sometimes referred to as TDLS, TLS or TLAS) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode lasers and laser absorption spectrometry. The advantage of TDLAS over other techniques for concentration measurement is its ability to achieve very low detection limits (of the order of ppb). Apart from concentration, it is also possible to determine the temperature, pressure, velocity and mass flux of the gas under observation. TDLAS is by far the most common laser based absorption technique for quantitative assessments of species in gas phase.

Direct Absorption Spectroscopy - A frequently used method involves that a tunable narrow-linewidth laser (frequently a single-frequency laser) is tuned through some wavelength range, and the light absorption in some sample is measured as a function of that wavelength. The absorption is often obtained by measuring: (a) the optical power of a laser beam which is transmitted through the investigated medium and (b) the optical power of a reference beam (obtained with a beam splitter between the laser and the investigated medium), which is not affected by the medium. That way, one can largely avoid that power fluctuations of the laser (intensity noise) affect the results. In many cases, one uses a balanced photodetector, essentially measuring the difference between two optical powers (rather than their ratio). [Website Link](https://www.rp-photonics.com/laser_absorption_spectroscopy.html)
Wavelength Modulation Spectroscopy - The term wavelength modulation refers to the kind of spectroscopy experiment in which the wavelength to which the monochromator (or other spectral selection device) is tuned is repetitively scanned more or less rapidly over a discrete spectral interval called the modulation interval.

https://www.semanticscholar.org/paper/Wavelength-Modulation-Spectroscopy-O%27Haver/fd894d0eb448d72ed8106255651c71578f9d913#:~:text=The%20term%20wavelength%20modulation%20refers%20to%20the%20kind%20discrete%20spectral%20interval%20called%20the%20modulation%20interval%2C%20%CE%94%CE%99.
Energy Emissions Modeling and Data Lab (EEMDL) - EEMDL is a multi-disciplinary research and education center with a mission to be the global data and analytics hub to support improved greenhouse gas emissions accounting across energy supply chains. EEMDL will build models and tools to improve greenhouse gas emissions accounting across energy supply chains. These models and tools will be peer-reviewed, transparent, timely, measurement-based, and made publicly available for all stakeholders. EEMDL leadership and team members are comprised of talented individuals from The University of Texas at Austin (UT Austin), Colorado State University, and Colorado School of Mines. https://www.eemdl.utexas.edu/about

Rocky Mountain Oilfield Testing Center - RMOTC is an energy testing facility that provides industry, academia, and other government agencies with a 10,000-acre "sandbox" to test, evaluate, demonstrate, and transfer new technologies relating to: Renewable Energy, Alternative Energy, Geothermal, Environmental, Energy Efficiency, Enhanced Oil Recovery, Production, Exploration, Flow Assurance, Open-Hole Well Logging and Hands-on Training Facility. RMOTC resides within the Naval Petroleum Reserve No. 3 (NPR-3), the Teapot Dome Oil Field. The field test site is a 10,000 acre operating oil field offering a full complement of associated facilities and equipment on-site. There are approximately 1,200 well bores and approximately 600 producing wells, in nine producing reservoirs ranging in depth from 500 ft. to 5000 ft. Existing producing wells, non-producing wells, or sites for drilling new wells are all available to field test partners.

National Center for Atmospheric Research (NCAR) - NCAR was established by the National Science Foundation in 1960 to provide the university community with world-class facilities and services that were beyond the reach of any individual institution. Located in Boulder, Colorado, NCAR provides the atmospheric and related Earth system science community with state-of-the-art resources, including supercomputers, research aircraft, sophisticated computer models, and extensive data sets. https://ncar.ucar.edu/who-we-are

National Renewable Energy Laboratory (NREL) - The National Renewable Energy Laboratory in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation. NREL is a federally funded research and development center sponsored by the Department of Energy and operated by the Alliance for Sustainable Energy, a joint venture between MRIGlobal and Battelle. Located in Golden, Colorado, NREL is home to the National Center for Photovoltaics, the National Bioenergy Center, and the National Wind Technology Center. https://www.nrel.gov/

Energy and Emissions Research Lab - Carleton University's Energy and Emissions Research Lab (EEERL) conducts internationally renowned, highly-cited interdisciplinary research designed to understand, quantify, model, and mitigate airborne pollutant emissions associated with global upstream energy production. Headed by Prof. Matthew Johnson, Canada Research Professor in Energy & Combustion Generated Pollutant Emissions, EEERL combines advanced experimentation and simulation in both large-scale controlled lab experiments and field work, leveraging a range of advanced optical diagnostics and experimental capabilities unparalleled in Canada. https://carleton.ca/eerl/

Energy Institute, Colorado State University and Powerhouse Energy Campus –
In the early 1990’s, Bryan Willson, then a Colorado State University assistant professor of mechanical engineering, was looking for a space to conduct his research and saw potential in the abandoned and in disrepair power plant. He toured the City of Fort Collins’ decommissioned coal-fired power plant on the north edge of downtown. Willson looked past the lack of heat, power and bathrooms, and saw the perfect site to build the Engines and Energy Conversion Lab (EECL). The EECL team worked to renovate the facility while they launched ambitious, large-scale research projects.

These early efforts were supported by Sam Clowney, head of the research sub-committee of the oil and natural gas industry council known as the Pipeline Research Council International (PRCI). Ultimately, the EECL team outgrew the original 35,000-square-foot facility, and a 65,000-square-foot addition was completed in 2014, providing more work space for faculty, staff, students and start-up companies.

With the addition, the building’s name was officially changed to the Colorado State University Powerhouse Energy Campus. The new name reflected the broad interdisciplinary and collaborative nature of the energy work being done at the re-modeled facility. At the same time, the building officially became the home base for the Energy Institute, of which Willson is the executive director.

Today, the Powerhouse Energy Campus is a modern, 100,000 square foot LEED Platinum Certified building that is one of the largest free-standing energy facilities at any university. It is recognized nationally and internationally for its interdisciplinary approach and its groundbreaking work on engine technology, electric grids, biofuels, energy policy, human behavior, energy access in the developing world, and energy-focused entrepreneurship.

Methane Emissions Technology Evaluation Center (METEC) – The METEC facility, located in northwest Fort Collins on CSU’s foothills campus, is a unique test and research facility for emissions detection and quantification, methods development, and training. METEC is fee based and supports research and testing by any interested party. https://energy.colostate.edu/metec/
The Collaboratory to Advance Methane Science (CAMS) - is a research collaboration on methane science directed by some of the world’s top leaders in energy development and administered by GTI Energy, a leading research, development, and training organization. CAMS research characterizes methane emissions and identifies specific sources, so mitigation strategies are most effective. Results from CAMS research has the potential to lead to technology solutions, better work practices, and new equipment designs to manage methane emissions. Demonstrable advancements in the environmental performance of natural gas bolster the fuel’s reputation as a sustainable, safe energy source, and the collaboration reinforces industry’s long-term commitment to environmental performance.

https://methancollaboratory.com/

CAMS research contributes to:

- Improved estimates for methane emissions – statistically valid data and tools
- Improved measurement, quantification, prioritization, and mitigation
- Reconciliation of data
- Cross-sector research and planning that is complementary rather than redundant

SRON – Stichting Ruimte Onderzoek Nederland, SRON is the Dutch national expertise institute for scientific space research. It is part of NWO. Since the foundation of the institute by university groups, in the early 1960s, we have, often in a leading role, provided key contributions to instruments of missions of the major space agencies, ESA, NASA, and JAXA. These contributions have enabled the national and international space-research communities to explore the universe and to investigate the Earth's atmosphere and climate. As a national expertise institute, we stimulate collaboration between the science community, technological institutes, and industry. https://www.sron.nl/about

Satellite Observations - Satellite observations are of particular use for methane emissions because of their high observation density and global coverage. Classification of satellite observations can be divided into two
categories: area flux mappers or point source imagers. Area flux mappers are designed to observe total emissions on global or regional scales with 0.1 – 10 km pixel sizes. Point source imagers are fine-pixel (<60 m) instruments designed to quantify individual sources by imaging the plumes. Point source imagers have much finer spatial resolution than area flux mappers but lower precision. (Jacob et al 2022)

Area Flux Mappers – GOSAT, TROPOMI, GOSAT-GW, MethaneSAT, Sentinel-5, GoeCurb, CO@M, MERLIN.

Point source imagers – Landsat-8, Worldview-3, Sentinel-2, GHGSat, PRISMA, EnMap, EMIT, Carbon Mapper

TROPOMI - The TROPOspheric Monitoring Instrument (TROPOMI) is the gas-sensing instrument on the Copernicus Sentinel-5 Precursor satellite developed by the European Space Agency. TROPOMI has been used to identify methane ultra-emitters around the world.

Visible Infrared Imaging Radiometer Suite (VIIRS) - The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is aboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 satellites. (Note: Prior to launch, NOAA-20 was known as the Joint Polar Satellite System, or JPSS-1, satellite.) https://www.earthdata.nasa.gov/learn/find-data/near-real-time/viirs

Probability of Detection (POD) - For a specified remote detection technology, the probability of detection (POD) function represents the likelihood of successfully detecting an emitter at some source rate for a given set of conditions during a single measurement observation. Although different technologies may be affected by additional parameters, in general, detectability of a given source (at rate Q) depends on the wind field that drives plume dispersion the spatial resolution of the measurement, and the effective signal-to-noise ratio (SNR) of the measurement system.” (Conrad et al 2022)
The probability that a given emission source will be detected by an LDAR method. Probability of detection is often depicted as a sigmoid curve or surface, where it is the function of emission rate and other relevant variables (e.g., wind speed).

A POD curve or surface is a key metric required to model the emission mitigation potential of solutions using tools like FEAST or LDAR-Sim. The POD describes the probability that an emission source will be detected by a solution as a function of many independent parameters including characteristics of the emission source itself (e.g. the emission rate, source type, position, etc.) and environmental conditions (e.g. wind speed and direction, precipitation, etc.).
4. Process control

Calibration: The comparison of a measuring device (an unknown) against an equal or better standard.

Drift: A systematic change in reading or value that occurs over long periods. Changes in ambient temperature, component aging, contamination, humidity, and line voltage may contribute to drift.

An alert is a notification that a particular event (or series of events) has occurred, which is sent to responsible parties for the purpose of spawning action. In general, an incident is a human-caused, accidental event that leads to (or may lead to) a significant disruption of business. An event in general terms is an observed change to the normal behavior of a system, environment, process, workflow, or person. Events can control peripheral equipment or processes, or act as an input for another control or control loop.

Alarm – A deviation alarm warns that a process has exceeded or fallen below a certain range around the set or reference point. Alarms can be referenced at a fixed number of degrees, plus or minus, from an established reference point. A process alarm warns that process values exceed the process alarm setting. A fixed value independent of set point. A set point is the desired or target value for an essential variable, or process value of a system.

Alarm Management: When every event triggers a notification, operational staff can become overwhelmed by the volume of non-actionable notifications (i.e., corresponding to operational emissions). When significant alerts trigger notifications, operators are only made aware of significant issues, which makes addressing these issues easier. In short, notifications are the messages that bring events, alerts, alarms, and incidents to the attention of the appropriate staff.

Supervisory control and data acquisition (SCADA): SCADA refers to ICS (industrial control systems) used to control infrastructure processes (water treatment, wastewater treatment, gas pipelines, wind farms, etc.), facility-based processes (airports, space stations, ships, etc.) or industrial processes (production, manufacturing, refining, power generation, etc.).

The following subsystems are usually present in SCADA systems:

- The apparatus used by a human operator; all the processed data are presented to the operator
- A supervisory system that gathers all the required data about the process
- Remote Terminal Units (RTUs) connected to the sensors of the process, which helps to convert the sensor signals to the digital data and send the data to supervisory stream.
- Programmable Logic Controller (PLCs) used as field devices
- Communication infrastructure connects the Remote Terminal Units to supervisory system.

Generally, a SCADA system does not control the processes in real time – it usually refers to the system that coordinates the processes in real time.

SCADA refers to the centralized systems that control and monitor the entire sites, or they are the complex systems spread out over large areas. Nearly all the control actions are automatically performed by the remote terminal units (RTUs) or by the programmable logic controllers (PLCs). The restrictions to the host control functions are supervisory level intervention or basic overriding. For example, the PLC (in an industrial process) controls the flow of cooling water, the SCADA system allows any changes related to the alarm conditions and set points for the flow (such as high temperature, loss of flow, etc) to be recorded and displayed.
Data acquisition starts at the PLC or RTU level, which includes the equipment status reports, and meter readings. Data is then formatted in such way that the operator of the control room can make the supervisory decisions to override or adjust normal PLC (RTU) controls, by using the HMI.

Human Machine Interface (HMI) - The HMI, or Human Machine Interface, is an apparatus that gives the processed data to the human operator. A human operator uses HMI to control processes. The HMI is linked to the SCADA system’s databases, to provide the diagnostic data, management information and trending information such as logistic information, detailed schematics for a certain machine or sensor, maintenance procedures and troubleshooting guides.

The information provided by the HMI to the operating personnel is graphical, in the form of mimic diagrams. This means the schematic representation of the plant that is being controlled is available to the operator. For example, the picture of the pump that is connected to the pipe shows that this pump is running and it also shows the amount of fluid pumping through the pipe at the particular moment. The pump can then be switched off by the operator. The software of the HMI shows the decrease in the flow rate of fluid in the pipe in the real time. Mimic diagrams either consist of digital photographs of process equipment with animated symbols, or schematic symbols and line graphics that represent various process elements.

HMI package of the SCADA systems consist of a drawing program used by the system maintenance personnel or operators to change the representation of these points in the interface. These representations can be as simple as on-screen traffic light that represents the state of the actual traffic light in the area, or complex, like the multi-projector display that represents the position of all the trains on railway or elevators in skyscraper.

https://www.onupkeep.com/learning/maintenance-tools/scada-system

http://www.scadasystems.net/
Process Historian - A process historian is essentially a type of 'time-series database' that's heavily tailored for the process control industry. Time-series databases are used in other industries such as finance (stock prices over time) or IT (server use over time). Operational historian refers to a complementary set of time-series database applications that are developed for operational process data. Historian software is often embedded or used in conjunction with standard DCS and PLC control systems to provide enhanced data capture, validation, compression, and aggregation capabilities.

Asset Framework - Asset Framework is a tool that allows you to model either physical or logical objects in the way that best suits the way you wish to view those assets and the data associated with them. With Asset Framework, you can identify the components or elements that make up a process, specify relationships between those objects and organize them in whichever way most aligns with your business.

Notification Framework - The Notification Framework includes a set of tables to capture information about notification types, objects, and channels. There are two kinds of destinations for notification messages: Predefined destinations are those destinations that are defined in the notification channels.

Latency -

- **Computers.** the period of delay when one component of a hardware system is waiting for an action to be executed by another component.

- **Digital Technology.** the time required online or in a network for the one-way or round-trip transfer of data between two nodes.
Digital Technology. (in virtual reality and other types of simulation) the discrepancy between the time delay of stimulus and response in the simulation as compared to the real-world equivalent.

Event Framework - The Event Framework provides the capability to register custom code to be run in response to specific events. All capabilities to extend the default behavior of the platform depend on the event framework.

Asset Analysis - Asset analysis is the process of identifying and analyzing the assets of a business or organization. Assets can be tangible, such as real estate or equipment, or intangible, such as intellectual property.

5. **Data analysis techniques**

Anomaly - A discernible increase of a measured atmospheric gas over a baseline in which both the discernible increase and baseline are pre-defined. An anomaly occurs when the atmospheric concentration of a gas becomes larger than the minimum atmospheric concentration of that gas a technology can discern above noise. Not to be confused with detection.

Feature Engineering - Feature engineering is the process of selecting, manipulating, and transforming raw data into features that can be used in supervised learning. In order to make machine learning work well on new tasks, it might be necessary to design and train better features. A “feature” is any measurable input that can be used in a predictive model — it could be the color of an object or the sound of someone’s voice. Feature engineering, in simple terms, is the act of converting raw observations into desired features using statistical or machine learning approaches.

Atmospheric Transport Modeling - A remote emissions measurement technique. Downwind mixing ratios of a pollutant, geospatial data (e.g., source height and location), and environmental data (e.g., wind speed and direction) are used to infer the location and/or mass or volumetric flux of a source. Many approaches exist.

Dispersion Modeling - Mathematical simulations that predict how a pollutant will move through the atmosphere.

- **Gaussian plume model** - The most commonly used dispersion model (see dispersion modeling). The Gaussian plume model is a relatively simple model (conceptually and computationally) that assumes the plume follows a normal (Gaussian) distribution in 3 dimensions.

- **Gaussian Puff Model** – A time varying dispersion model that approximates a continuous release as a sum over many small “puffs”.

- **Large Eddy simulations (LES)** – Sophisticated implementations of atmospheric transport that directly solve the governing equations using numerical computation techniques.

Heavy-tailed distribution - A highly skewed probability distribution. Most emissions distributions are heavy-tailed, with a small number of super-emitters accounting for the majority of emissions.
Lifecycle Analysis - A technique for assessing the environmental aspects associated with a product over its life cycle.

Localization - Identifying the physical location of a leak source. Localization can be done at different scales (site-level, equipment-level, and component-level).

Quantification - A general term for characterizing emissions numerically. Can be with emission factor bottom-up inventories or based on measurement. With measurement it often refers to emission rate estimation, but atmospheric mixing ratios may also be quantified.

Time-Series analytics - Time series analysis is a statistical method to analyze the past data within a given duration of time to forecast the future. It comprises of ordered sequence of data at equally spaced interval. Time series data collected over different points in time breach the assumption of the conventional statistical model as correlation exists between the adjacent data points. This characteristic of the time series data breaches is one of the major assumptions that the adjacent data points are independent and identically distributed. This gives rise to the need of a systematic approach to study the time series data which can help us answer the statistical and mathematical questions that come into the picture due to the time correlation that exists.

Time series analysis holds a wide range of applications is it statistics, economics, geography, bioinformatics, neuroscience. The common link between all of them is to come up with a sophisticated technique that can be used to model data over a given period of time where the neighboring information is dependent. In time series, Time is the independent variable and the goal is forecasting. https://www.educba.com/time-series-analysis/
Mean Absolute Error - In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size.

Uncertainty – “A situation where there is no scientific basis to form any calculable probability whatever.” – John Maynard Keynes Uncertainty is the error in estimating a parameter, such as the mean of a sample, or the difference in means between two experimental treatments, or the predicted response given a certain change in conditions. Uncertainty is measured with a variance or its square root, which is a standard deviation. Uncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.

Risk – “A situation where the relative probabilities are well known.” [Risk is] An ongoing or upcoming concern that has a significant probability of adversely affecting the success of major milestones. [Risk is] The likelihood of variation in the occurrence of an event, which may have either positive or negative consequences.

Geospatial analytics - Geospatial analytics gathers, manipulates and displays geographic information system (GIS) data and imagery including GPS and satellite photographs. Geospatial data analytics rely on geographic coordinates and specific identifiers such as street address and zip code. They are used to create geographic models and data visualizations for more accurate modeling and predictions of trends.
What is GIS?
A geographic information system (GIS) is a computer system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data.

Pixel - In digital imaging, a pixel or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the smallest element that can be manipulated through software. Each pixel is a sample of an original or synthetic image; more samples typically provide more accurate representations of the original. The intensity of each pixel is variable. In color imaging systems, a color is typically represented by three or four component intensities such as red, green, and blue, or cyan, magenta, yellow, and black.

Geo-reference - Georeferencing means that the internal coordinate system of a digital map or aerial photo can be related to a ground system of geographic coordinates. A georeferenced digital map or image has been tied to a known Earth coordinate system, so users can determine where every point on the map or aerial photo is located on the Earth's surface. The relevant coordinate transforms are typically stored within the image file (GeoPDF and GeoTIFF are examples of georeferenced file formats), though there are many possible mechanisms for implementing georeferencing. Georeferencing in the digital file allows basic map analysis to be done, such as pointing and clicking on the map to determine the coordinates of a point, to calculate distances and areas, and to determine other information. https://www.usgs.gov/faqs/what-does-georeferenced-mean

Digital Elevation Model - A Digital Elevation Model (DEM) is a representation of the bare ground (bare earth) topographic surface of the Earth excluding trees, buildings, and any other surface objects. DEMs are created from a variety of sources. USGS DEMs used to be derived primarily from topographic maps. Those are being systematically replaced with DEMs derived from high-resolution lidar and IfSAR (Alaska only) data. https://www.usgs.gov/faqs/what-digital-elevation-model-dem

Orthomosaic Maps - An orthomosaic is essentially a map composed of several orthophotos or orthoimages. An unprocessed aerial photo has inherent inaccuracies due to distortion. An orthoimage is an adjusted version of the original aerial image that accounts for the distortion due to camera tilt, topographic relief, or lens distortion. This process, called orthorectification, results in an aerial image that has been geometrically corrected such that it allows for true distances to be measured. https://3dinsider.com/orthomosaic-map/
Image Processing and Pattern Recognition – Pattern recognition is a branch of machine learning that focuses on the recognition of patterns and regularities in data. Image processing is a method to convert an image into digital form and perform some operations on it, to get an enhanced image or to extract some useful information from it. It is a type of signal dispensation in which input is image, e.g. video frame or photograph and output may be image or characteristics associated with that image. The two types of methods used for Image Processing are Analog and Digital Image Processing.

Advancing Development of Emissions Detection (ADED) - The project will implement a comprehensive process of protocol development and testing to accelerate the adoption of natural gas leak detection and quantification (LDAQ) solutions by natural gas operators, and their approval by cognizant regulatory
Project Astra - Project Astra is an effort focusing on developing an innovative sensor network to continuously monitor methane emissions across large areas to enable quick and efficient detection and repair of leaks. ExxonMobil is working with the University of Texas, Gas Technology Institute, Environmental Defense Fund and Pioneer Natural Resources. Project Astra will create a network of sensors to feed data to a central system that can quickly alert the right people to fix a leak. This high-frequency monitoring system will enable operators to more efficiently direct resources to a specific location. If successful, the project could provide a more affordable, efficient solution to reduce methane emissions.

Fugitive Emissions Abatement Simulation Toolkit (FEAST) - The Fugitive Emissions Abatement Simulation Toolkit or FEAST is a model to evaluate the effectiveness of methane leak detection and repair (LDAR) programs at oil and gas facilities. Recent advances in the development of new fixed (continuous monitoring systems) and mobile (truck-, drone-, plane-, and satellite-based) methane leak detection technologies have led to growing interest in alternative LDAR programs. The FEAST model helps operators and regulators compare a variety of LDAR program configurations such as continuous monitoring systems and hybrid aerial and ground surveys to develop cost-effective mitigation protocols. https://www.arvindravikumar.com/feast/

Methane Emission Estimation Tool (MEET) - The Methane Emission Estimation Tool (MEET) is a high time resolution and spatially resolved emission model that bridges the gap between the spatial and temporal scales of observations and inventories. The model simulates both long-term variability, such as the production declines of unconventional wells, and short-term variability, such as the cycling of compressors or well pad liquid separators. The model also captures the sequencing of emissions and utilizes empirical distributions to capture highly skewed data that underlie emission factors. MEET was developed with support from the
Collaboratory to Advance Methane Science (CAMS), the University of Texas and Colorado State University have developed a new community modeling tool for constructing inventories of methane emissions from oil and gas operations. The development of this tool was driven by the need to reconcile methane emission measurements and commonly available emission estimates. https://methanecollaboratory.com/wp-content/uploads/2021/06/Scientific-Insights-MEET-June2021_vFinal.pdf#:~:text=The%20Methane%20Emission%20Estimation%20Tool%20(MEET)%29 %20is%20a,capture%20highly%20skewed%20data%20that%20underlie%20emission%20factors.

6. Emissions reporting policy and practices

Anthropogenic - Of, relating to, or resulting from the influence of human beings on nature. Anthropogenic carbon dioxide is that portion of carbon dioxide in the atmosphere that is produced directly by human activities, such as the burning of fossil fuels, rather than by such processes as respiration and decay.

Corporate Sustainability Reporting Directive (CSRD) - In spring 2021, the European Commission presented its proposal for the Corporate Sustainability Reporting Directive. The CSRD is a reviewed and revised version of the Non-Financial Reporting Directive (NFRD) and promotes the disclosure of sustainability related parameters in companies’ reporting practice. One of its main building blocks: double materiality. This involves that companies report on the effect of climate change on their companies on the one hand, while reporting on the impact of the company’s activities on environmental and social aspects. https://hedgehogcompany.nl/csrd-ghg-protocol/

International Sustainability Standards Board (ISSB) – The Trustees of the IFRS Foundation announced the formation of the International Sustainability Standards Board (ISSB) on 3 November 2021 at COP26 in Glasgow, following strong market demand for its establishment. The ISSB is developing—in the public interest—standards that will result in a high-quality, comprehensive global baseline of sustainability disclosures focused on the needs of investors and the financial markets. https://www.ifrs.org/groups/international-sustainability-standards-board/

International Methane Emissions Observatory (IMEO) - of the UN Environment Program is a project which tackles the problem of methane emissions by collecting, integrating, and reconciling methane data from different sources, including scientific measurement studies, satellites, industry reporting through the Oil and Gas Methane Partnership 2.0, and national inventories.

Net Zero - Achieving a state where either (1) no greenhouse gases are emitted, or (2) remaining emissions are offset through other actions or technologies that remove carbon from the atmosphere. Reliance on fossil fuels means humans have been releasing far more greenhouse gases into the atmosphere over the past century than are being removed from it through natural or technological means. This imbalance in emissions is causing global warming. That’s why, as part of international climate negotiations, countries have agreed to dramatically reduce their emissions such that the amount being released by mid-century matches the level of gases being pulled out. Net zero is the shorthand term for this balance.

Transparency - The degree to which an initiative or producer discloses their internal operations and standards and allows for accessibility of information regarding an initiative

Green House Gas Protocol (GHG Protocol) - An emissions quantification framework that is widely used by businesses, industry associations, NGOs, and other organizations. Some initiatives use the GHG Protocol
for their emissions quantification requirements. GHG protocol has published several standards but is recognized for these two emission quantification guidelines: (1) Corporate Standard – for scope 1, 2, and energy-related scope 3, and (2) Corporate Value Chain (Scope 3) Standard – for life-cycle emissions, both upstream and downstream.

The Greenhouse Gas Protocol provides standards for both the public and the private sector about measuring greenhouse gasses, such as carbon dioxide, methane, nitric oxide hydrofluorocarbons and other trace gases. Through its standards, it creates a common ground for sustainability certifications and reporting systems. Because of this standardization, it allows companies to thoroughly understand their greenhouse gas emissions and creates collective understanding of the problem. Moreover, it allows companies to critically think about appropriate actions that should be taken to fight these emissions. When a company understands its emissions and has taken steps to reduce these, it enables the company to make environmental claims towards stakeholders.

The Greenhouse Gas Protocol (GHGP) was established through a partnership between the World Resources Institute and the Business Council for Sustainable Development. The GHGP is divided into 3 scopes:

Scope 1 covers all direct emissions. The company or organization itself is responsible for these emissions. For example, the CO2 emissions which are emitted due to the combustion of diesel from machines on the production location of the company. An exception is the combustion, fermentation, or gasification of biomass.

Scope 2 covers all greenhouse gas emissions that are emitted from the production of energy. For example, grey electricity production emits CO2. This means scope 2 is not about emissions on location, but about the emissions produced at the location where the electricity is produced needed by the company or organization.
Scope 3 covers all GHG emissions that are not covered by scope 1 or 2 and needs to cover the entire value chain of the company or the organization. This scope often represents the largest source of emissions and covers both upstream and downstream activities of the organization. Examples of these are; capital goods, business travels, purchased goods and services and franchises.

QMRV - (quantification, monitoring, reporting and verification) is a record keeping protocol of greenhouse gas (GHG) emissions at natural gas production hubs. The motive behind the QMRV goal is to interact with the natural gas producers is gaining better knowledge of the upstream GHG emissions and accelerating the adoption of sophisticated monitoring technology and methods.

Carbon Capture and Storage - Carbon capture and storage (CCS) refers to a collection of technologies that can combat climate change by reducing carbon dioxide (CO2) emissions. The idea behind CCS is to capture the CO2 generated by burning fossil fuels before it is released to the atmosphere. The question is then: What to do with the captured CO2? Most current CCS strategies call for the injection of CO2 deep underground.
This forms a “closed loop”, where the carbon is extracted from the Earth as fossil fuels and then is returned to the Earth as CO2.

Today, CCS projects are storing almost 45 million tons of CO2 every year, which is about the amount of CO2 emissions created by 10 million passenger cars. Capture generally takes place at large stationary sources of CO2, like power plants or industrial plants that make cement, steel, and chemicals. Most current carbon capture projects use a liquid to chemically remove the CO2 before it goes out the smokestack, but several new types of capture processes are under development.

The captured CO2 gas is then compressed so it becomes liquid-like and transported to a storage site, generally through a pipeline. Ship transport is more expensive than using pipelines, but it is being considered in both Europe and Japan. Once at the storage site, the CO2 is pumped more than 2,500 feet down wells into geological formations like used-up oil and gas reservoirs, as well as formations that contain unusable, salty water.

https://climate.mit.edu/explainers/carbon-capture
Environmental Protection Agency (EPA) - A United States government agency whose work is to improve society’s understanding of climate change and its impacts on human health and the environment. The data, tools, and resources that EPA develops can also be used by other agencies, organizations, states, tribes, and communities to help tackle the climate crisis effectively, equitably, and sustainably.

In early 1970, as a result of heightened public concerns about deteriorating city air, natural areas littered with debris, and urban water supplies contaminated with dangerous impurities, President Richard Nixon presented the House and Senate a groundbreaking 37-point message on the environment. These points included:

- requesting four billion dollars for the improvement of water treatment facilities;
• asking for national air quality standards and stringent guidelines to lower motor vehicle emissions;
• launching federally-funded research to reduce automobile pollution;
• ordering a clean-up of federal facilities that had fouled air and water;
• seeking legislation to end the dumping of wastes into the Great Lakes;
• proposing a tax on lead additives in gasoline;
• forwarding to Congress a plan to tighten safeguards on the seaborne transportation of oil; and
• approving a National Contingency Plan for the treatment of oil spills.

https://www.epa.gov/history/origins-epa

The mission of EPA is to protect human health and the environment. EPA works to ensure that:

• Americans have clean air, land and water;
• National efforts to reduce environmental risks are based on the best available scientific information;
• Federal laws protecting human health and the environment are administered and enforced fairly, effectively and as Congress intended;
• Environmental stewardship is integral to U.S. policies concerning natural resources, human health, economic growth, energy, transportation, agriculture, industry, and international trade, and these factors are similarly considered in establishing environmental policy;
• All parts of society—communities, individuals, businesses, and state, local and tribal governments—have access to accurate information sufficient to effectively participate in managing human health and environmental risks;
• Contaminated lands and toxic sites are cleaned up by potentially responsible parties and revitalized; and
• Chemicals in the marketplace are reviewed for safety.

Greenhouse Gas Reporting Program (GHGRP)

The GHGRP requires reporting of greenhouse gas (GHG) data and other relevant information from large GHG emission sources, fuel and industrial gas suppliers, and CO2 injection sites in the United States. Approximately 8,000 facilities are required to report their emissions annually, and the reported data are made available to the public in October of each year. Owners or operators of facilities that contain petroleum and natural gas systems and emit 25,000 metric tons or more of GHGs per year (expressed as carbon dioxide equivalents) report GHG data to EPA. Owners or operators collect GHG data; calculate GHG emissions; and follow the specified procedures for quality assurance, missing data, recordkeeping, and reporting. Subpart W consists of emission sources in ten segments of the petroleum and natural gas industry. https://www.epa.gov/ghgreporting

Subpart OOOOa—Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced after September 18, 2015. This subpart establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur

58
dioxide (SO2) emissions from affected facilities in the crude oil and natural gas production source category that commence construction, modification, or reconstruction after September 18, 2015.

Introduction to NSPS OOOOb - The Environmental Protection Agency (EPA) announced the adoption of a comprehensive regulatory framework with its Final Rule for Methane Reduction (NSPS OOOOb, in addition to OOOOc and Appendix K), aimed at curbing methane emissions from the oil and gas industry. This is the first of several articles we are developing to help operators understand the implications of the 1,690-page rule for their existing and anticipated well sites and facilities and compliance solutions. This is a short overview, and we plan to issue more in-depth articles in the near future.

https://encinoenviron.com/nsps-ooobo-overview-epa-adopts-final-rule-on-

methane/#:~:text=The%20Environmental%20Protection%20Agency%20(EPA)%20announced%20the%20adoption%20of%20methane%20emissions%20from%20the%20oil%20and%20gas%20industry.

Alternative Technologies and Tiered Approach. The rule now permits the use of various alternative technologies or combinations thereof for leak detection for well sites, centralized production facilities, and compressor stations. This flexibility provides operators with opportunities to tailor their emissions monitoring and compliance strategies to the needs of specific locations and their strategic emissions reduction goals.

For example, the table below summarizes the screening frequency with minimum detection threshold of the technology used for the screening at well site, centralized production facilities, and compressor stations subject to AVO inspections with quarterly OGI or EPA Method 21 monitoring (this table is just one of several in the final rule).

<table>
<thead>
<tr>
<th>Minimum Screening Frequency</th>
<th>Minimum Detection Threshold of Screening Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly</td>
<td>≤1 kg/hr</td>
</tr>
<tr>
<td>Bimonthly</td>
<td>≤2 kg/hr</td>
</tr>
<tr>
<td>Bimonthly + Annual OGI</td>
<td>≤10 kg/hr</td>
</tr>
<tr>
<td>Monthly</td>
<td>≤5 kg/hr</td>
</tr>
<tr>
<td>Monthly + Annual OGI</td>
<td>≤15 kg/hr</td>
</tr>
</tbody>
</table>

Source: EPA Final Rule 40 CFR Part 60, RIN 2060-AV16 (Table 1 to Subpart OOOOb of Part 60—Alternative Technology Periodic Screening Frequency at Well Sites, Centralized Production Facilities, and Compressor Stations Subject to AVO Inspections with Quarterly OGI or EPA Method 21 Monitoring, p. 1295). Importantly, the rule establishes detection performance standards, instead of mandating specific technologies.

Adopting an alternative monitoring technology will require owners and operators, rather than solely technology providers, to demonstrate the required emission reduction equivalence of the alternative monitoring program with respect to OGI or EPA Method 21 performance. The implication is that a specification sheet or marketing collateral from a vendor is not enough to evidence that a specific technology meets the minimum detection requirements. Modeling of emission reductions equivalence will be required.

EPA Method 21 - EPA Method 21 is defined by the agency as being “a determination of volatile chemical compound leaks.” It is a method that is used by certified inspectors to best identify possible VOC leaks on process equipment sources. Depending on the nature of the operation, these equipment sources might include “valves, flanges, and other connections, pumps, and compressors, pressure relief devices, process drains, open-ended valves, pump and compressor seal system degassing vents, accumulator vessel vents, agitator seals, and access door seals.” Generally, this method is not meant to be used as a gauge for a measure of mass emission rate, but rather leak detection, specifically.
As stated in Section 6.0 of the EPA’s Method 21 document, suspected leaks must be tested with Method 21 by employing a specialized VOC monitoring instrument. Subsequently, samples must be collected, preserved, stored, and transported according to the guidelines. https://www.camcode.com/blog/what-is-epa-method-21/

Emissions Factors - A representative value that attempts to relate the quantity of a pollutant released to the atmosphere with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of a pollutant, divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per megagram of coal burned). Such factors facilitate an estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages for all facilities in the source category (i.e., a population average).

Emissions factors have long been the fundamental tool in developing national, regional, state, and local emissions inventories for air quality management decisions and in developing emissions control strategies. More recently, emissions factors have been applied in determining site-specific applicability and emissions limitations in operating permits by federal, state, local, and tribal agencies, consultants, and industry.

The general equation for emissions estimation is:

\[E = A \times EF \times (1 - ER/100) \]

where:

- \(E \) = emissions;
- \(A \) = activity rate;
- \(EF \) = emission factor, and
- \(ER \) = overall emission reduction efficiency

Super-Emitter Program

The Super-Emitter Program will be in effect and includes some potentially controversial elements.

Definition of Super Emitter Event. EPA defined an event with an emission rate of 100 kg/hr. or more as a super emitter event, the same way it was originally proposed in the December 2022 supplemental proposal.

Certified Third-Party Verifiers. EPA will accredit each third-party verifier individually. It was noted that third-party verifiers are restricted to using satellite or airborne technologies. Other non-remote sensing technologies are not approved (e.g., excluding OGI, since it will require close access to a facility).

Flow of Information. Notably, the Super Emitter Program has reshaped the flow of information. Third-party notifiers, previously certified or approved by the EPA, will notify the EPA of a super emitter event. As it was originally proposed, third-party verifiers would send notice directly to owners and operators along with EPA, but in a nod to rumblings of potential legal challenges to the Constitutionality of that proposal, EPA is now the official notifier of a super emitter event. Per the final rule, the EPA will evaluate the received data and subsequently send notifications to operators and owners.

The Super Emitter Program supplements the periodic monitoring and repair work practice standards in NSPS [OOOOb](https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification) after implemented by States by requiring repair of the source of the super-emitter.
Emissions rate – The size of an emissions source in terms of customary units, such as mass per time (e.g., kilograms per hour) or volume per time (e.g., standard cubic meters per hour). Emission rate A measure of how quickly a pollutant is being introduced to the atmosphere. Typically expressed in either mass per unit time (e.g., kg/hr) or volume per unit time (e.g., SCF/hr). Many units exist and are used.

Emissions inventory – A list of an organization’s emissions sources and their magnitude, which may be estimated using emissions factors, engineering estimates, measurement, or a combination.

Equipment - In emissions attribution, equipment is the second most granular piece of oil and gas infrastructure. Examples include tanks and separators.

Measurement-informed inventory – means a greenhouse gas emissions inventory adjusted or informed by measurements of greenhouse gas emissions from regional, local or point-source monitoring or through parametric monitoring including but not limited to measurement of pressure, temperature, flow or control efficiency.

Measurement-informed Inventory reporting - Recent legislation in the United States requires updating current methane reporting programs for oil and gas facilities with empirical data. While technological advances have led to improvements in methane emissions measurements and monitoring, the overall effectiveness of mitigation strategies rests on quantifying spatially and temporally varying methane emissions more accurately than the current approaches. Including measurements of methane at the facility level and adjusting facility specific emissions factors can lead to more accurate reporting of methane emissions levels.

Carbon Accounting - Carbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas (GHG) an organization emits. It can also be used to track projects or actions to reduce emissions in sectors such as forestry or renewable energy. Corporations, cities and other groups use these techniques to help limit climate change. Organizations will often set an emissions baseline, create targets for reducing emissions, and track progress towards them. The accounting methods enable them to do this in a more consistent and transparent manner.

These techniques can also help understand the impacts of specific products and services by quantifying their GHG emissions throughout their lifecycle. This can promote more environmentally-friendly purchasing decisions. GHG accounting methods can help investors better understand the climate risks of companies they invest in. Corporate and community net-zero goals are also aided by accurate accounting methods. There is some evidence that programs that require GHG accounting have the effect of lowering emissions.

Carbon Intensity – is the amount of carbon dioxide or carbon dioxide equivalent per unit of measure. The ratio of carbon emissions to some measure of productivity, such as natural gas production or energy content of oil.

Carbon Market - A greenhouse gas trading system that enables monetization of emissions reductions and/or strong performance relative to other market participants. Participants may buy or sell units of GHG emissions in order to operate within the limits outlined by the agreement governing a particular market.
the European Union and others have launched carbon markets as a potential tool to encourage emissions reduction. They work by capping the CO2 emissions any given project can release, and then letting companies and other entities buy and sell rights to those emissions. That means polluters who exceed their cap must pay for additional emissions rights, also known as carbon offset credits, while those who take action to lower their emissions can sell surplus credits. Some companies have turned carbon trading into a business by sponsoring climate-friendly activities — such as forest protection and renewable energy installations — to proactively produce carbon offset credits. But attempts to implement carbon markets also highlight their limitations: Many existing carbon-trading schemes are voluntary, emissions reduction benefits can be hard to verify, and past fraud raises questions about the credibility of carbon offset projects.

Carbon Offsets - A unit of greenhouse gas emissions reduced by one actor that can be traded to compensate for emissions by another actor. Private sector companies are increasingly relying on voluntary offsetting by means of carbon credits to get to carbon-neutral status. For example – company A could offset its unavoidable emissions by purchasing carbon credits from company B that is in the business of, or uses, renewable energy. Company B in exchange would set up a new solar plant or a new wind farm. In this case, B benefits from clean energy and A from its reduced carbon footprint.

Carbon Insets - As explained by the International Platform for Insetting, with the aim of slashing GHG emissions from one’s own supply chain. Insetting is the implementation of nature-based solutions such as reforestation, agroforestry, renewable energy, and regenerative agriculture. Some insetting activities also improve the livelihoods of indigenous communities as a result.

Emission trading system (ETS) - Market-based instruments that create incentives to reduce emissions where these are most cost-effective. In most regulatory trading systems, the government sets an emissions cap in one or more sectors, and the entities that are covered are allowed to trade emissions permits. Rapid growth of voluntary ETSs is also underway.

Equivalence - The concept that two LDAR programs mitigate equal amounts of emissions. In the context of LDAR programs, alternative work practices and technologies are required to demonstrate that they meet or exceed mitigated emissions under regulatory frameworks and voluntary initiatives (e.g., MiQ).

Compliance carbon credit markets – Compliance carbon credit prices are largely driven by government policy. Government strategy will dictate maximum emission limits (otherwise known as allowances, or credits). Carbon emitters buy or sell carbon credits based on emissions generated in relation to their allowance limits. If they are under their emissions limit, they sell their excess allowances. If they are over their limit, they buy to cover the shortfall. The value of the global carbon credit market reached ~$850 billion in 2021, a 164% increase from 2020. Currently, there are three major Emissions Trading Systems around the world. They are:

- European Union’s Emissions Trading System (EU)
- The California Global Warming Solutions Act (USA)
- The Chinese National Emission Trading System (China)

Voluntary carbon markets - Voluntary carbon markets allow carbon emitters to offset their unavoidable emissions by purchasing carbon credits emitted by projects targeted at removing or reducing GHG from the atmosphere. Each credit – which corresponds to one metric ton of reduced, avoided or removed CO2 or equivalent GHG – can be used by a company or an individual to compensate for the emission of one ton of CO2 or equivalent gases. When a credit is used for this purpose, it becomes an offset. It is moved to a register for retired credits, or retirements, and it is no longer tradable.
Companies can participate in the voluntary carbon market either individually or as part of an industry-wide scheme, such as the Carbon Offsetting and Reduction Scheme for International Aviation, which was set up by the aviation sector to offset its greenhouse gas emissions. International airline operators taking part in CORSIA have pledged to offset all the CO2 emissions they produce above a baseline 2019 level.

While compliance markets are currently limited to specific regions, voluntary carbon credits are significantly more fluid, unrestrained by boundaries set by nation states or political unions. They also have the potential to be accessed by every sector of the economy instead of a limited number of industries. https://www.spglobal.com/commodityinsights/en/market-insights/blogs/energy-transition/061021-voluntary-carbon-markets-pricing-participants-trading-corsia-credits

Global Warming Potential - GWP was developed to allow comparisons of the global warming impacts of different gases. Specifically, it is a measure of how much energy the emissions of one ton of a gas will absorb over a given period, relative to the emissions of one ton of carbon dioxide (CO2). The larger the GWP, the more that a given gas warms the Earth compared to CO2 over that time period. The time period typically used for GWPs is 100 years. GWPs provide a common unit of measure, which allows analysts to add up emissions estimates of different gases (e.g., to compile a national GHG inventory), and allows policymakers to compare emissions reduction opportunities across sectors and gases.

CO2, by definition, has a GWP of 1 regardless of the time period used, because it is the gas being used as the reference. CO2 remains in the climate system for a very long time: CO2 emissions cause increases in atmospheric concentrations of CO2 that may last thousands of years.

Methane (CH4) is estimated to have a GWP of 28–36 over 100 years. CH4 emitted today lasts about a decade on average, which is much less time than CO2. But CH4 also absorbs much more energy than CO2. The net effect of the shorter lifetime and higher energy absorption is reflected in the GWP. The CH4 GWP also accounts for some indirect effects, such as the fact that CH4 is a precursor to ozone, and ozone is itself a GHG.

Nitrous Oxide (N2O) has a GWP 265–298 times that of CO2 for a 100-year timescale. Chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons (HCFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) are sometimes called high-GWP gases because, for a given amount of mass, they trap substantially more heat than CO2. The GWPs for these gases can be in the thousands or tens of thousands.
GWP is a major analytical and policy issue impacting how methane emissions are reported concerns how to translate methane emissions into carbon dioxide equivalent. Methane is a much more potent greenhouse gas than carbon dioxide, although it has a much shorter atmospheric life. Emissions are very often reported in terms of carbon dioxide equivalent (CO2e), which requires an assessment of the global warming potential (GWP) of methane. The most-common metrics are that the radiative forcing impact of methane is 28–36 times that of CO2 measured over a 100–year time horizon, and 84–87 times over a 20-year horizon.

The measurement, reporting and verification of methane emissions using a transparent and globally accepted methodology has become a crucial issue. Given the level of public scrutiny and policy focus on this issue, it has become absolutely vital that the gas industry takes proactive steps to create and implement a global plan both to reduce, but first to accurately document, methane emissions,

Methane Intensity - Methane emissions intensity is a measure of methane emissions relative to natural gas throughput. Methane intensity can be determined for a facility (e.g., compressor station), an area (e.g., production basin), or even an entire value chain (e.g., from natural gas production to distribution). Investors, customers, environmental groups, and other stakeholders are increasingly requesting information on natural gas company performance based on methane emissions intensity. While intensity is becoming a preferred approach for communicating methane emissions data throughout the industry, there is no standard methodology for calculating it. This is an obstacle to managing, tracking, and more transparently communicating current efforts to reduce methane emissions.

https://www.aga.org/content/uploads/2022/01/methaneintensityprotocol_v10_feb2021.pdf

Methane Management - is a holistic approach to addressing methane emissions performance across multiple dimensions, including actions to reduce methane emissions intensity through facility design and operational best practices; deployment of advanced technology to detect, measure and quantify site- and source-level emissions; and development and assurance of methane emissions inventories for reporting and disclosures.

Mitigation - In the climate context, mitigation refers to climate solutions designed to stop global warming. Those solutions may include efforts to reduce the level of greenhouse gases going into the atmosphere, such as by transitioning away from a fossil-fuel based economy to a clean-energy one, as well as natural and human-made solutions for drawing or pulling gases out of the atmosphere. Of the nearly $90 billion collected and mobilized in climate finance in 2021, almost $54 billion, or 60%, went to mitigation efforts, according to a November analysis published by the OEI.

Adaptation - Even if we stopped pumping greenhouse gases into the atmosphere today, the world would continue to warm for a while. The best way to reduce the harm from this locked-in warming is to adapt for what is to come, whether by building new construction to withstand stronger storms, avoiding building in flood-prone areas, or setting up public cooling centers during extremely hot days. Financing for adaptation remains a challenge, with only about $25 billion, or 27%, of the roughly $90 billion in climate finance amassed in 2021 going towards such efforts, OECD found.

Loss and Damage - Even at 1.2C of global warming compared to the pre-industrial era, climate change is already killing people and destroying land and livelihoods. The harm caused by these impacts in poorer countries that are the least responsible for emissions is referred to as “loss and damage,” which is also shorthand for funding provided by developed nations to address that harm. Developing nations successfully pushed for the inclusion of “loss and damage” in the Paris Agreement, and last year’s COP delegates reached a landmark deal to establish funding arrangements. That momentum has carried into COP28, where rich nations are under
pressure to pony up more money; in an early breakthrough, nearly 200 nations agreed on how to run the fund and more than $400 million has been committed to the program so far.

Methane measurement is the process of taking a reading of the methane concentration or methane emissions rate within an air sample at a specific point in time. Typically, measurement units are parts per million, parts per billion and kilograms per hour. Understanding global and local background methane concentrations is necessary to contextualize the data. Emissions measurements may be performed as one-time activities (snapshots), at regular intervals or on a continuous basis, but whatever the frequency, obtaining representative measurement is important.

Methane quantification methods for determining the size of a methane emission source in customary units if emissions rate, such as mass per time (e.g. kilograms per hour), or volume per time (e.g. standard cubic meters per hour). Methane can be quantified through engineering estimations, direct measurement of a methane source (e.g. by utilizing bagging procedures) and modeling that uses ambient measurements and meteorological data to infer an emissions rate.

Super-emitter – A methane source that emits a disproportionate amount compared to emissions from the total source category. Super-emitters can be continuous or episodic and can have a wide range of underlying issues, such as a failing tank control, lack of takeaway or pipeline blowdown. A recent study by NASA defines a super-emitter as a source that emits greater than 10 kilograms of methane per hour. An uncharacteristically large point source of methane. Given that most methane emissions distributions are heavily skewed, a small number of super-emitters can account for most aggregate emissions across the supply chain. Emissions distributions vary widely by basin and production type, so there is some debate over what constitutes a super-emitter.

Responsible Gas - The natural gas industry has seized upon consumers’ environmental consciousness and is beginning to market “responsibly produced” gas - at a premium price. The first public transaction involving gas certified under the Responsible Gas program by Independent Energy Standards Corp. took place in September 2018 when Southwestern Energy sold an undisclosed volume to local utility company New Jersey Natural Gas. The transaction represents part of a small but growing niche of the natural gas market, in which end-users can specify that they want to purchase gas with certain attributes, such as gas produced without hydraulic fracturing or gas produced with low levels of methane emissions.

Under certifications programs, gas wells and related facilities are rated based on four key metrics: impacts to water, impacts to air and impacts to land, as well as community and social considerations. Wells are scored on a zero-to-150 scale, with wells scoring 125 to 150 given a Platinum rating, which comprises the top 10% of operators. The next tier is Gold, which includes wells scoring 100 to 125 and includes the top quartile of producers. Wells scoring 75 to 100 fall into the Silver category, and those that rate below 75 are classified as actively improving. https://www.spglobal.com/platts/en/market-insights/latest-news/natural-gas/040519-us-industry-turns-to-responsible-natural-gas-to-fetch-premium-price

Third-party Verification - Third-party reviews check the veracity of both financial and non-financial reports so your readers and benchmarking organizations can trust that your reports are accurate. This additional step can also identify issues in your reporting methodology and underlying data, which can result in substantial improvements to your broader ESG program. Examples of this verification process include Project Canary’s TrustWell process https://www.projectcanary.com/operationalize/ and RMI’s MiQ process https://miq.org/about/. GTI is sponsoring a broad effort to establish gas measurement and verification protocols in a program called Veritas https://www.gti.energy/veritas-a-gti-differentiated-gas-measurement-and-verification-initiative/
Many of the terms are used inconsistently, which can cause confusion. While they all describe validation processes, they differ when it comes to precision and coverage. So let’s first get these definitions straight:

Assurance: a data check process that requires the same methodologies and standards as financial data and must be performed by an accredited auditor.

Verification: a data check process used when reviewing non-financial data and collection processes compared against predefined criteria and must be performed by an accredited auditor.

Alignment: an established methodology (e.g., a rationale for how it was prepared, what was included and excluded, and why these decisions were made) that a report follows. https://www.measurabl.com/how-assurance-and-verification-help-your-sustainability-efforts/

The Intergovernmental Panel on Climate Change (IPCC) - The United Nations body for assessing the science related to climate change. It was created to provide policymakers with regular scientific assessments on climate change, its implications and potential future risks, as well as to put forward adaptation and mitigation options. The IPCC prepares comprehensive Assessment Reports about the state of scientific, technical and socio-economic knowledge on climate change, its impacts and future risks, and options for reducing the rate at which climate change is taking place. It also produces Special Reports on topics agreed to by its member governments, as well as Methodology Reports that provide guidelines for the preparation of greenhouse gas inventories. The latest report is the Sixth Assessment Report which consists of three Working Group contributions and a Synthesis Report. The Working Group I contribution was finalized in August 2021, the Working Group II contribution in February 2022, the Working Group III contribution in April 2022 and the Synthesis Report in March 2023. https://www.ipcc.ch/

IPIECA - Ipieca is the global oil and gas association dedicated to advancing environmental and social performance across the energy transition. It brings together members and stakeholders to lead in integrating sustainability by advancing climate action, environmental responsibility and social performance across oil, gas and renewables activities. Ipieca was founded at the request of the United Nations Environment Programme in 1974. Through its non-lobby and collaborative approach Ipieca remains the industry’s principal channel of engagement with the UN. The association was established in 1974 as the International Petroleum Industry Environmental Conservation Association and changed its name in 2002. https://www.ipieca.org/

Oil and Gas Climate Initiative (OGCI) - OGCI is a CEO-led initiative focused on accelerating action to a net zero future consistent with the Paris Agreement. To achieve its ambitions, OGCI’s 12 members are targeting net zero emissions at their own operations and collaborating with companies and partners across the industry and in other sectors to urgently reduce global greenhouse gas emissions. To support companies outside the group, OGCI focuses on partnering, capacity building and innovations to target key technologies and areas that can have the greatest impact on emissions reductions. OGCI’s current focus areas include carbon capture, utilization and storage (CCUS), methane emissions reduction and transport emissions. https://www.ogci.com/

National inventory report (NIR) - At its eighth session, the Conference of the Parties (COP), the decision-making body responsible for monitoring and reviewing the implementation of the United Nations Framework Convention on Climate Change, requested the secretariat to publish on its website the annual inventory submissions consisting of the national inventory report (NIR) and common reporting format (CRF) of all Parties included in Annex I to the Convention. The NRIs contain detailed descriptive and numerical information and the CRF tables contain all greenhouse gas (GHG) emissions and removals, implied emission factors, and activity data.

OGMP 2.0 - The Oil & Gas Methane Partnership 2.0 (OGMP 2.0) is the United Nations Environment Programme’s flagship oil and gas reporting and mitigation programme. OGMP 2.0 is the only comprehensive,
measurement-based reporting framework for the oil and gas industry that improves the accuracy and transparency of methane emissions reporting. This is key to prioritising methane mitigation actions in the sector. If you can’t measure it, you can’t fix it.

OGMP 2.0’s data is one of the key components of IMEO’s solution to the methane data problem. IMEO collects, integrates, and reconciles methane data to generate a public dataset of methane emissions levels and sources. This comprehensiveness allows to track and compare progress and performance across companies.

OGMP, launched in 2014 by the Climate and Clean Air Coalition, was ratcheted up in scope and ambition in November 2020 to become OGMP 2.0. OGMP 2.0 is a more ambitious and comprehensive reporting framework that fosters reporting of methane emissions and directly connects it to strategic mitigation actions. This comprehensiveness allows to track and compare progress and performance across companies. https://www.unep.org/topics/energy/methane/international-methane-emissions-observatory/imeo-action/methane-alert-and

Technology Innovation and Emissions Reduction Regulation (TIER) - The Technology Innovation and Emissions Reduction Regulation requires regulated facilities to reduce greenhouse gas emissions. The regulation applies to facilities which emit more than 100,000 tonnes of carbon dioxide. Facilities which emit less than the threshold may opt-in to the regulation, and conventional oil and gas facilities under the same ownership may be combined into a single aggregate facility. The regulation sets out high-performance benchmarks or enables the director to set facility-specific product benchmarks. To meet the emissions reduction requirement, facilities can reduce their emissions or use emission performance credits, emission offsets or pay into the regulated fund. Regulated facilities must provide annual compliance reports and facilities that emit more than 1 million tonnes of carbon dioxide must also provide a yearly forecasting report.

Global Methane Pledge - Participants joining the Pledge agree to take voluntary actions to contribute to a collective effort to reduce global methane emissions at least 30 percent from 2020 levels by 2030, which could eliminate over 0.2°C warming by 2050. This is a global, not a national reduction target. Participants also commit to moving towards using the highest tier IPCC good practice inventory methodologies, as well as working to continuously improve the accuracy, transparency, consistency, comparability, and completeness of national greenhouse gas inventory reporting under the UNFCCC and Paris Agreement, and to provide greater transparency in key sectors.

The Pledge aims to catalyze global action and strengthen support for existing international methane emission reduction initiatives to advance technical and policy work that will serve to underpin Participants’ domestic actions. The Pledge also recognizes the essential roles that private sector, development banks, financial institutions and philanthropy play to support implementation of the Pledge and welcomes their efforts and engagement. https://www.globalmethanepledge.org/

ESG Investing - ESG investing is undoubtedly one of the fastest-growing trends in finance and alternative data over the past few years. ESG stands for Environmental, Social, and Governance and is an evolution of socially responsible investing (SRI)—an investment strategy that seeks both financial returns as well as a positive social and environmental impact. By integrating environmental, social, and governance factors into valuing a company, the goal is to enhance traditional analysis by identifying risks and opportunities that go beyond fundamental metrics. https://www.mlq.ai/esg-investing/

Let’s look at each of these three criteria in more detail.

67
Environmental

Environmental factors that go into a company's ESG score attempt to quantify the impact—positive or negative—that their operations have on the planet. A few of the core sub-factors that go into evaluating a company's environmental impact highlighted by Motley Fool include:

- Carbon footprint
- Water consumption
- Water disposal
 - Recycling practices
- Climate change policies
- Use of renewable energy
- Relationship with regulatory bodies such as the EPA (Environmental Protection Act)

Social

Social factors that go into a company's ESG rating are related to how the company addresses issues concerning customers, employees, suppliers, and so on. A few of the sub-factors that go into social ESG scores include:

- Employee compensation, benefits, and turnover
- Employee training
- Employee safety
- Diversity and inclusion in hiring and promotion practices
- Ethical supplier and supply chain sourcing
- Customer ratings and feedback
- Government lobbying efforts
- Consumer protection, such as recalls, lawsuits, and regulatory actions

Governance

Finally, factors that go into a company's governance rating include topics such as business ethics, quality of management, and the board's independence. Specifically, a few examples of governance metrics include:

- Ethical business practices and policies
- Executive compensation levels
- Addressing conflicts of interest at the board or executive level
- Shareholder voting rights for nominating board candidates
- Transparency between shareholders and the executive team
- History of legal issues with shareholders
- History with SEC or other regulatory bodies
Key Sources

Highwood Emissions Management https://highwoodemissions.com/glossary/
Energy Information Administration https://www.eia.gov/tools/glossary/
IPIECA methane glossary https://www.ipieca.org/resources/methane-emissions-glossary