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Schrodinger Equation and 
Materials
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Schrödinger Equation

■ In quantum mechanics, the Schrödinger equation is the analog to 
Newton’s second law in classical mechanics

■ It is applied to atoms, molecules, solids, subatomic systems, etc.
■ For a single particle embedded in a potential field:     

• The wave function            describes the quantum state of the system
• S.E. is a linear PDE describing how that quantum state evolves in 

time (dynamics)

Hamiltonian H = T + V



Schrödinger Equation

• Think in terms of Einstein and de Broglie’s insights into quantization of light – 
i.e., the idea that light can have a wave and a particle like nature

“Where did we get that (equation) from?  Nowhere.  It is not possible to derive it 
from anything you know.  It came out of the mind of Schrödinger.”   - Feynman

• Schrödinger’s insight was to write down the wave function as a plane wave, 
and note some properties of its spatial and time derivatives:



Schrödinger Equation is Separable in Time & Position

stationary state

No spread of energies in a stationary state. 
Every measurement gives the same value. 
So we call         an energy eigenstate.



Schrödinger Equation - Time Evolution Dynamics

Linear combination of stationary states is also a solution: 

Maxime 
Martinez,

From 
Wikipedia

● Oscillating amplitudes on each 
stationary state gives rise to time 
dynamics. 

● Constructive and destructive 
interferences between states ⇒ 
tunneling



Example: Stationary States of the Hydrogen Atom

Solutions exhibits a separable form (eigenfunctions):

The wavefunctions are commonly referred to as orbitals and are characterized by three 
quantum numbers n, l, and m.

• n is the principle quantum number: 0, 1, 2, …
• l is the azimuthal quantum number: 0, 1, … (n-1)
• m is the magnetic quantum number: -l, -(l-1), …0…,(l-1), l

With corresponding energies (eigenvalues) En ~ -1/n2





Multi-Electron Atoms, Molecules, & Solids
Let R1, …., RN = positions of the N nuclei

      eZ1, …., eZN = charge of the N nuclei

      M1, …, MN = masses of the nuclei

      r1,…, rn = positions of the n electrons 

e-

e-

e-

Usually we assume that the nuclei are fixed with respect to the electrons, and only solve for 
the electronic degrees of freedom.  The electronic S.E. and Hamiltonian looks like this:

Note how the only 
part of the 
Hamiltonian that 
changes for 
different material 
systems is the 
external potential.
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First-Principles Methods - 
Overview/Hierarchy



First-Principles Modeling

“The fundamental laws necessary for the mathematical treatment of a large part 
of physics and the whole of chemistry are thus completely known, and the 
difficulty lies only in the fact that application of these laws leads to equations that 
are too complex to be solved.” 

- Dirac



The Schrodinger equation describes all 
properties of all materials.

• The wave function encodes all 
information about a system of 
particles (here the electrons, 
assuming fixed nuclei)

• Many approximations already: 
non-relativistic, 
time-independent, 
Born-Oppenheimer.

•  Eigenvalue/eigenfunction 
problem: wave functions are 
eigenfunctions and energies 
are the eigenvalues

wave 
function

energy



It is not possible to solve exactly the Schrodinger 
equation except in the simplest systems.

• Electron-electron term makes the 
solution non-separable

(Hartree, Hartree-Fock)

• For an n electron system, wave 
function is a function of 3n variables

• Quickly becomes unmanageable, e.g. 
storing a wave function on a 2x2x2 
real space grid requires storing

• 1 electron : 8 values 
• 10 electrons : 109 values
• 100 electrons :  1090 values
• 1000 electrons : 10900 values

wave 
function

energy



First Principles - Approaches to Solving

■  Perturbation Theory 
■  Variational Method
■  WKB Approximation

■  Hartree-Fock & post Hartree-Fock 
Methods

■  Density Functional Theory 
■  Quantum Monte Carlo 
■  Some methods are combinations of 

these approaches: GW, DMFT

This problem is generally not solvable 
analytically.  Typical approaches to 
approximating the solution are:



Approaches to solving

First Principles Methods

Wavefunction-Based Hamiltonian-Based

Hartree Hartree-Fock Beyond HF

Wavefunction Expansion Perturbation-Based

DFT

- QMC
- Coupled Cluster (CCSD(T))
- Configuration Interaction

GW DMFT



approaches to solving

Many Body Wave 
Function

Charge Density Single Particle 
Green Function

Dimensionality Approximate 
exchange/correlation 

functional

Approximate the 
Green function

QMC, CI, CCSD DFT GW, DMFT

entity we 
work with

examples

the price we pay



Methodology: DFT & QMC

Walter Kohn (left), 
receiving the Nobel prize 
in chemistry in 1998.

    
E 0 = E[n 0]

Energy

Hohenberg & Kohn, 1964

Electron density

Interacting Non-
interacting

- --- -- -- -
Kohn & Sham, 1965

Density Functional Theory Quantum Monte Carlo

Stochastic Approach to Solving the 
Interacting, Many Body Problem

t

Initial

Final



Tradeoffs: Today DFT represents the best 
available compromise between accuracy and 
computational efficiency. 

Really why we 
use DFT:

it’s surprisingly 
good and pretty 

fast



The first ‘first-principles’ calculation



DFT Deep Dive



prelude: Hartree and Hartree-Fock
Hartree and Hartree-Fock begin with a guess at a complex wavefunction, based on a 
product of single-particle “orbitals”:

If the Hamiltonian is the usual kinetic and potential terms,

Then by applying the variational argument, one can obtain the single-particle Hartree-Fock 
equations:

Hartree ansatz

Hartree-Fock ansatz



Hartree and Hartree-Fock - Self Consistent Field 

The single-particle picture (or “mean-field” picture) comes from the fact that the Hartree product is a 
product of single-particle states.

Each orbital can be determined by solving these single-particle Schrödinger equations, if all the other 
orbitals are known.

However, this is not the case, and instead what we do is simply to guess at some set of initial orbitals.

Then, the Hamiltonian can be “constructed” from these orbitals, and the single-particle equations can be 
solved for a “new” set of orbitals.

This process is repeated until the new and old orbitals don’t change (by much). This process is known 
as Self Consistency, or the Self Consistent Field approach.



DFT works by mapping the interacting Schrodinger 
equation onto an effective non-interacting equation. 

• Founded on the two Hohenberg-Kohn 
theorems 

• Hohenberg-Kohn I: one to one mapping 
between the external potential of the 
nuclei, ground state wave function, and 
ground state charge density 

• Hohenberg-Kohn II: there exists a 
universal functional of the density F[ρ(r)] 
such that the ground state energy E is 
minimized at the true ground state 
density 

• Typically formulated as an 
Euler-Lagrange system of equations

UNIVERSAL
but unknown

Hohenberg and Kohn, 1964



The Kohn-Sham approach is most widely used in 
practice. 

UNIVERSAL
By inspection:

Comparison to Hartree-Fock:

• Formulates a expression for 
the unknown universal 
functional

• The assumed form defines 
the exchange-correlation 
functional (which itself is 
still unknown)



27

Kohn and Sham said:

where we have a separation of kinetic, Coulomb, and exchange/correlation terms.

Importantly, the kinetic part is defined as the kinetic energy of the system of 
non-interacting electrons at the same density.

The Coulomb term is simply the Hartree electrostatic energy - namely, a classical 
interaction between two charges summed over all possible pairwise interactions.

The equation above, in a sense, acts to define the last term, the exchange-correlation 
part, as simply everything else that should be there to make this approximation to F 
exact.

The Kohn-Sham approach is most widely used in 
practice. 



The next step to solving for the energy is to introduce a set of one-electron 
orthonormal orbitals.

Now the variational condition can be applied, and one obtains the one-electron 
Kohn-Sham equations.

where VXC is the exchange correlation functional, related to the xc energy as:

The Kohn-Sham approach is most widely used in 
practice. 

- set of coupled, non-linear equations that can be solved for the orbitals 
- two common approaches: self-consistency loop and direct diagonalization



To solve the Kohn-Sham equations, a number of different methods exist.

These tend to differ first and foremost in the choice of basis set for expanding the 
Kohn-Sham orbitals.

For molecular systems a typical choice is some type of atom-centered basis such as sums of 
Gaussians.

In extended (e.g., solid, liquid) systems, plane waves are more suitable.

One important difference between DFT and Hartree-Fock, in general, is that the Kohn-Sham 
orbitals used in DFT are a set of non-interacting orbitals designed to give the correct density 
and have no physical meaning beyond that.

This is in contrast to the orbitals in Hartree-Fock theory, which directly represent electrons 
and are designed to give the correct wavefunction as opposed to just the density.

The Kohn-Sham approach is most widely used in 
practice. 



DFT - the Kohn-Sham Equations 
real Schrodinger Equation: - electron-electron interactions explicitly present 

- need to solve an interacting differential equation for a 
multi-dimensional function 

- at least its a linear equation

instead, in Kohn-Sham DFT:

electron 
kinetic energy

electron-ion 
Coulomb 

interaction

Hartree term. The 
electron-electron interaction 
expressed as the Coulomb 

interaction of a charge density 
interacting with itself

exchange and correlation. our 
best guess at fixing everything 
that is wrong with the prior terms. 



Since the exact form of the exchange correlation 
functional not known, it needs to be approximated.

The local density approximation (LDA) assumes that at each point in real space, the exchange -correlation 
energy at that point is equal to the exchange-correlation energy of a homogeneous electron gas of equivalent 
density. 

The generalized gradient approximations (GGAs) describes the exchange-correlation energy at a point in terms 
of the total density at that point and its gradient. 

Meta-GGAs use even higher order derivatives of the density at a point. e.g. SCAN 

Hybrid functionals - incorporation of exact exchange, to eliminate some of the self-interaction in LDA, GGA. 

van der Waals functionals - for weak interactions, layered materials, 2D material heterostructures. 

     ~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*

The uncertainty in the accuracy of DFT largely originates from the fact that we always need to select some form 
for this functional. Once the functional has been selected, we largely have to live with whatever physics comes 
out of it. 



DFT is typically very useful for 
the prediction of ground state 
properties such as lattice 
constants, elastic moduli, and 
equation of state.

Haas, Tran, and Blaha. 
Phys. Rev. B 79, 085104 

2009 

~*~*~*~

Can you find any 
systematic trends?



phase stability example

Case study of chalcopyrite material CuInSe
2

PBE HSE06 Experiment



why it is hard to predict stability with DFT: 
… a bayesian explanation

inherent uncertainties in DFT energies results in a large false positive rate 
(and a non-negligible false negative rate)



Band Gaps

Chen W, Pasquarello A. Phys. Rev. B. 2012; 86:035134



TinyDFT Demo
● The following mini tutorial uses https://github.com/theochem/tinydft but with a 

modified main script, program_mendelejev.py
● Necessary programs/packages: Python 3, numpy >=1.4.0, scipy >=1.0.0, 

matplotlib >= 2.2.4, autograd >=1.2
● Changes to the main script include:

○ Selecting elements: Na, Ti, Si (by atomic number)
○ Reducing the density plots
○ Create tinyEIGENVAL files with each orbital’s energy eigenvalue

● To start from the modifications, use the files in: 
https://github.com/angelapak/HDR_tinyDFT_demo

● To run:
○ CD to your tinyDFT directory
○ “Python program_mendelejev.py
○ Primary outputs of interest are “rho_…” and “tinyEIGENVAL_…”

https://github.com/theochem/tinydft
https://github.com/angelapak/HDR_tinyDFT_demo


TinyDFT Demo
● What aspects of DFT does this demo conserve?

○ Self-consistent field (SCF) method

● What simplified aspects should we be mindful of in this demo?
○ Single atom calculations
○ Simplified exchange correlation functions

Ground State 
Energy

Charge Density Eigenvalues

H𝛹 = E𝛹⍴ = q/V



TinyDFT Demo
● Change into your tinyDFT (or HDR_tinyDFT_demo) directory

● Entering atomic numbers 11,14, 22
● Output:

○ Charge density figures “rho_….png”
○ Eigenvalue files “tinyEIGENVAL…”

“python program_mendelejev.py”



TinyDFT Demo

energy 
convergence density component R(r)

s : [-1.77194465e+02 -1.93984067e+01 -2.21070030e+00 -1.35167170e-01]
p :[-16.22419885  -1.376303  ]

d : [-0.12742141]

eigenvalues



Extension to Solids - Crystalline Silicon

energy 
convergence eigenvaluescharge density



Extension to Solids - Crystalline Silicon

energy 
convergence

eigenvaluescharge densitylattice

● We now have to initialize a lattice rather than an atom



Extension to Solids - Crystalline Silicon

● Evaluation of basic DFT calculations gives us bulk and electronic properties

minimum

maximum

a

a
lattice constants

bulk modulus

Conduction Band

Valence Band

conductivity

mobility

mDOS



Recent Developments in 
DFT



Williams et al., “Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians”, Phys Rev X 
10, 011041 (2020). (Simons collaboration on Many-Electron problem)

benchmarking



“Density functional theory (DFT) is now 
routinely used for simulating material 
properties. Many software packages are 
available, which makes it challenging to 
know which are the best to use for a 
specific calculation. Lejaeghere et al. 
compared the calculated values for the 
equation of states for 71 elemental 
crystals from 15 different widely used 
DFT codes employing 40 different 
potentials . Although there were 
variations in the calculated values, most 
recent codes and methods converged 
toward a single value, with errors 
comparable to those of experiment.”

Lejaeghere et al., “Reproducibility in density functional theory calculations of solids”, Science 351 6280 (2016)

benchmarking



Lehtola and Marques, “Many recent density functionals are numerically ill-behaved”, J. Chem. Phys. 157, 174114 
(2022)

Challenges with newer functionals
SCAN family

● As the form of the exchange 
correlation functional gets 
more complex, numerical 
evaluations become more 
and more tricky 

● Analysis of the number of 
quadrature points needed to 
converge the total energy 
(for a single electronic scf 
step!) grows out of control 



● Approach: Deep neural networks 
with differentiable programming 
used to construct accurate density 
functionals using the Kohn−Sham 
equations as a regularizer … 

● Generalizability as a challenge: 
“However, such ML-designed 
functionals have not been 
implemented in standard codes 
because of one last great 
challenge: generalization. We 
discuss how effortlessly 
human-designed functionals can be 
applied to a wide range of 
situations, and how difficult that is 
for ML.”

Machine learned functionals

Kieron Burke and others:
● “Kohn−Sham equations as regularizer: building prior knowledge into machine-learned physics.” Phys. Rev. 

Lett. 126, 036401 (2021).
● “Learning to approximate density functionals”, Acc. Chem. Res. 54, 818−826 (2021).



Good references
● R. M. Martin, “Electronic Structure: Basic Theory and Practical Methods”.  

(“the book”, very physics-y)
● Kieron Burke, “The ABC of DFT” 

○ https://dft.uci.edu/doc/g1.pdf  
● R. O. Jones, “Density functional theory: its origins, rise to prominence, and 

future”, Rev Mod Phys 87 (2015).
● Kieron Burke and others, “Learning to approximate density functionals”, Acc. 

Chem. Res. 54, 818−826 (2021). 

https://dft.uci.edu/doc/g1.pdf

