
Coding Graph Neural Networks 
in Deep Graph Library

By Liyi Zhang, advisor: Adji Bousso Dieng



Table of Contents

● Graph Neural Network (GNN)
○ Quick intro to the message passing framework

● Deep Graph Library (DGL)
○ Background
○ DGLGraph() object
○ Node and edge features
○ Build a high level graph convolutional network (GCN)
○ Build customized graph attention network (GAT) and GCN
○ Logistics 

■ Mini-batching, saving, and loading



Graph Neural Network
Message Passing Framework

Overall framework
● Takes several iterations.
● Each node has an embedding 

vector. The aim is to update node 
embeddings during each 
iterations, and use updated node 
embeddings to perform 
downstream tasks.

● Each iteration uses two modules: 
update and aggregate.

Notations



Graph Neural Network
Message Passing Framework



Graph Neural Network
Message Passing Framework

Book: Hamilton (2020) - Graph Representation Learning
Paper: Gilmer, et al. (2017) - Neural Message Passing for Quantum Chemistry



Deep Graph Library (DGL)

Efficient and scalable

Framework agnostic
● Naturally incorporated into PyTorch, TensorFlow, and MXNet 

ecosystems.



Deep Graph Library (DGL)



Conceptually

Graph = G(V, E), where V is the set of 
vertices; E is the set of edges. An edge is 
written as (u, v), with u, v ∈ V.

To represent edge connections, we can 
use an adjacency matrix A. A[u,v] = 1 if 
(u,v) ∈ E; 0 otherwise. A[u,u] = 1.

In DGL: DGLGraph()

‘Graph’ object



DGLGraph()



DGLGraph()
Nodes?



DGLGraph()
Nodes

● 0,1,2,3,4,5,6
(indexing starts from 0)



DGLGraph()
Nodes

● 0,1,2,3,4,5,6
(indexing starts from 0)

Edges



DGLGraph()
Nodes

● 0,1,2,3,4,5,6
(indexing starts from 0)

Edges
● (0,1)
● (0,2)
● (0,3)
● (0,4)
● (0,5)
● (5,6)



DGLGraph()

Visualize with networkx



DGLGraph()

Visualize with networkx

We see that edges are directed. Often it’s 
convenient to ignore direction. In code, it means 
giving each edge double direction.



DGLGraph()



Node and edge-related basic functions



Node and edge features

● Access through `g.ndata`, `g.edata`.
● Both are dictionaries.

○ There can be multiple types of features
○ Each feature’s name is arbitrary

● The first dimension of each tensor, i.e. 
g.ndata[key].shape[0], should equal the 
number of nodes (or number of edges for 
g.edata).



High-Level Functions for GNN
 A whole message-passing layer (iteration)

Paper: Kipf and Welling (2016) 
- Semi-Supervised 
Classification with Graph 
Convolutional Networks



Initializations

For each layer in all layers, append 
one GraphConv layer

Forward function



Run the model



Attempt to reproduce 
output value

1. Instantiate a one-layer GNN
2. Fix weights to be all 1’s, and no 

bias
3. Run the model and print output



Attempt to reproduce output value



Attempt to reproduce output value

Note:
● GraphConv normalizes via GCN by default (unless norm is otherwise 

specified).
● If no self-to-self edge is included, the update function for node i does not 

include node i itself.



Low-Level Functions for GNN
An addition to message-passing: add attention weights to each node, and attention weights depend on 
edge information (Graph Attention Network (GAT)).

Paper: Velickovic, et al. (2017) - Graph Attention Networks



apply_edges()



apply_edges()

A user-defined function always 
take `edges` object.

Here double_value simply 
doubles the value of the input.



update_all()



update_all()



Putting It Together



No Attention - Vanilla Message-Passing



Logistics - Minibatches



Logistics - Save and Load

Note:
● Save and load a list of graphs.
● Label is a dictionary. The value length must be same as number of graphs.
● If you save a batched graph, it cannot be unbatched after loading.

○ Might want to save number of nodes of each individual graph as well.



Thank you! 

Q & A


