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is shape optimization

A form-finding method computes a shape in static equilibrium
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is shape optimization

A form-finding method computes a shape in static equilibrium




is shape optimization

A form-finding method computes a shape in static equilibrium




The force density method (FDM)

A numerical form-finding method for vaults and cable-nets
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Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0



The force density method (FDM)

How does it work? Forward

FDM

F (T, z)

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0



The force density method (FDM)

How does it work? Define the force density of the bars

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0 9



The force density method (FDM)

How does it work? Forward

FDM

F (T, z)

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0 10



The force density method (FDM)

How does it work? Get the XYZ coordinates of the nodes

w; = [0.53,0.49, 2.83]

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0
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The challenges of form-finding

Viable shapes in static equilibrium meet additional constraints:
fabrication, structural, aesthetic, and environmental.

No two structures are (or want to be) alike.



The challenges of form-finding

Shapes in equilibrium conditioned on fabrication constraints

Length constraint _— ,

L=0.75m

Reaction force constraint
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The challenges of form-finding

Capturing architectural design intent

Panozzo, et al. (2011). Designing Unreinforced Masonry Models. DOI: 10.1145/2461912.2461958
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Constrained form-finding is the challenge

We actually want to solve an inverse problem

FDM

: — F (T, x)
. q

T
“What is the set of force densities q \ ~ "A shape in static equilibrium which

that are best conducive to it?” approximates this other shape”

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0
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by hand?
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Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0
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JAX FDM

A differentiable, hardware-accelerated framework for constrained form-finding in structural design.

=

Crafted with care in the Form-Finding Lab at Princeton University ==

JAX FDM enables the solution of inverse form-finding problems for discrete force networks using the force density
method (FDM) and gradient-based optimization. It streamlines the integration of form-finding simulations into
deep learning models for machine learning research.
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A solution

A differentiable tool for constrained form-finding. Powered by JAX

Pastrana, et al. (2022). JAX FDM: A differentiable framework for constrained form-finding. URL: https://github.com/arpastrana/jax_fdm 19




A solution

A differentiable tool for constrained form-finding. Powered by JAX

Length constraint
L=0.75m

Plane constraint

Reaction force constraint

Pastrana, et al. (2022). JAX FDM: A differentiable framework for constraine URL: https://github.com/arpastrana/ja' 20



Tackling constrained form-finding

We apply backpropagation for the inverse design of 3D structures

FDM Loss

¢ = -9t (@ B () | L = - al?

The gradient What we want

The new force densities The equilibrium state

Pastrana, et al. (2022). JAX FDM: A differentiable framework for constrained form-finding. URL: https://github.com/arpastrana/jax_fdm 21



Inverse design with backpropagation is faster and more stable
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Pastrana, et al. (2022). Constrained form-finding of structures using automatic differentiation. Journal of computer-aided design.
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from jax import grad
import jax.numpy as jnp
from jax_fdm.datastructures import FDNetwork

from jax_fdm.equilibrium import EquilibriumModel

# create the FDM model
pattern, supports, loads = FDNetwork.from_json('arch.json')

model = EquilibriumModel(pattern, supports, loads)

# define the loss function
def loss(qg, target_Llength=1.5):
eq_state = model(q)
return jnp.mean((eq_state.edge lengths - target Llength) ** 2)

# vanilla gradient descent
g = jnp.ones(10) * -1.0 # initial guess
lr = 0.1 # step size
for i in range(1000):
loss_value = loss(q)

qg=q - 1r * grad(loss)(q)



from jax import grad
import jax.numpy as jnp
from jax_fdm.datastructures import FDNetwork

from jax_fdm.equilibrium import EquilibriumModel

pattern, supports, loads = FDNetwork.from_json('arch.json")

model = EquilibriumModel(pattern, supports, loads)

def loss(q, target_length=1.5):
eq_state = model(q)
return jnp.mean((eq_state.edge_lengths - target_Length) ** 2)

q = jnp.ones(10) * -1.0

lr = 0.1

for i in range(1000):
loss_value = loss(q)

g =9 - 1r * grad(loss)(q)




Constrained form-finding of tall buildings

Leveraging static equilibrium to design new vertical structures
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Pastrana, et al. (2023). Form-finding tall buildings. Advances in Architectural Geometry. In preparation.



to reduce waste

Vaults that require minimal scaffolding during construction

Mexican architect Mexican builder

26



to reduce waste

ring construction

Oval, et al. (2023). 4D funicular form-finding for centring-free construction. Advances in Architectural Geometry. In preparation.
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What's next?

Combining machine learning and differentiable form-finding

Learning to solve the inverse problem
JAX FDM as a layer in a neural network. 10x speed-up?

Learning continuous representations of graphs
Can we optimize patterns and force densities jointly?

28



Constrained form-finding is the challenge

We actually want to solve an inverse problem

FDM

() #ma (o)
v

T
“What is the set of force densities q \ ~ "A shape in static equilibrium which

that are best conducive to it?” approximates this other shape”

Schek (1974). The force density method for form finding and computation of general networks. DOI: 10.1016/0045-7825(74)90045-0 29



Learning to solve the inverse proble

Differentiable form-finding as a layer in a neural network

/ \ / YVY \ /ﬁ
Neural Differentiable Loss
Network Physics
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Learning to solve the inverse proble

Differentiable form-finding as a layer in a neural network
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Oval (2019). Topology finding of patterns for structural design. Ph.D. thesis A



Generative model of patterns

Learning continuous representations of graphs
Cast as a NLP task?

ATPA°TAPA® ATTPDA® ATA°ATAPA°ATDPA® APA°APA°TD APA°APA°

Oval (2019). Topology finding of patterns for structural design. Ph.D. thesis



Generative mo’ 'l of patterns
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Generative model of patterns

Learning continuous representations of graphs
Cast as a NLP task?
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Oval (2019). Topology finding of patterns for structural design. Ph.D. thesis
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Generative model of patterns

Learning continuous representations of graphs
Cast as a NLP task?
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Oval (2019). Topology finding of patterns for structural design. Ph.D. thesis
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