Tro, 5th edition Detailed Table of Contents

Chapter 1:
1.1 Atoms and Molecules
1.2 The Scientific Approach to Knowledge
1.3 The Classification of Matter
1.4 Physical and Chemical Changes and Physical and Chemical Properties
1.5 Energy: A Fundamental Part of Physical and Chemical Change
1.6 The Units of Measurement
1.7 The Reliability of Measurement
1.8 Solving Chemical Problems
1.9 Analyzing and Interpreting Data

Chapter 2:
2.1 Brownian Motion: Atoms Confirmed
2.2 Early Ideas about the Building Blocks of Matter
2.3 Modern Atomic Theory and the Laws that Led to It
2.4 The Discovery of the Electron
2.5 The Structure of the Atom
2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms
2.7 Find Patterns: The Periodic Law and the Periodic Table
2.8 Atomic Mass: The Average Mass of an Element's Atoms
2.9 Molar Mass: Counting Atoms by Weighing Them

Chapter 3:
3.1 Hydrogen, Oxygen, and Water
3.2 Chemical Bonds
3.3 Representing Compounds: Chemical Formulas and Molecular Models
3.4 An Atomic-Level View of Elements and Compounds
3.5 Ionic Compounds: Formulas and Names
3.6 Molecular Compounds: Formulas and Names
3.7 Summary of Inorganic Nomenclature
3.8 Formula Mass and the Mole Concept for Compounds
3.9 Composition of Compounds
3.10 Determining a Chemical Formula from Experimental Data
3.11 Organic Compounds

Chapter 4:
4.1 Climate Change and the Combustion of Fossil Fuels
4.2 Writing and Balancing Chemical Equations
4.3 Reaction Stoichiometry: How Much Carbon Dioxide?
4.4 Stoichiometric Relationships: Limiting Reactant, Theoretical Yield, Percent Yield, and Reactant in Excess
4.5 Three Examples of Chemical Reactions: Combustion, Alkali Metals, and Halogens
Chapter 5: Introduction to Solutions and Aqueous Reactions
5.1. Molecular Gastronomy and the Spherified Cherry
5.2. Solution Concentration
5.3. Solution Stoichiometry
5.4. Types of Aqueous Solutions and Solubility
5.5. Precipitation Reactions
5.6. Representing Aqueous Reactions: Molecular, Ionic, and Net Ionic Equations
5.7. Acid-Base Reactions
5.8. Gas-Evolution Reactions
5.9. Oxidation-Reduction Reactions

Chapter 6: Gases
6.1. Supersonic Skydiving and the Risk of Decompression
6.2. Pressure: The Result of Molecular Collisions
6.3. The Simple Gas Laws: Boyle's Law, Charles's Law, and Avogadro's Law
6.4. The Ideal Gas Law
6.6. Mixtures of Gases and Partial Pressures
6.7. Gases in Chemical Reactions: Stoichiometry Revisited
6.8. Kinetic Molecular Theory”. A Model of Gases
6.9. Mean Free Path, Diffusion, and Effusion of Gases
6.10. Real Gases: The Effects of Size and Intermolecular Forces

Chapter 7: Thermochemistry
7.1. Chemical Hand Warmers
7.2. The Nature of Energy: Key Definitions
7.3. The First Law of Thermodynamics: There is No Free Lunch
7.4. Quantifying Heat and Work
7.5. Measuring Change in E for Chemical Reactions: Constant-Volume Calorimetry
7.6. Enthalpy: The Heat Evolved in a Chemical Reaction at Constant Pressure
7.7. Constant-Pressure Calorimetry: Measuring the Enthalpy Change in a Reaction
7.8. Relationships Involving Change in Enthalpy of Reaction Values
7.9. Determining Enthalpies of Reaction from Standard Enthalpies of Formation
7.10. Energy Use and the Environment

Chapter 8: The Quantum-Mechanical Model of the Atom
8.6. The Shapes of Atomic Orbitals

Chapter 9: Periodic Properties of the Elements
9.1. Nerve Signal Transmission
9.2. The Development of the Periodic Table
9.3. Electron Configurations: How Electrons Occupy Orbitals
9.4. Electron Configurations, Valence Electrons, and the Periodic Table
9.5. The Explanatory Power of the Quantum-Mechanical Model
9.6. Periodic Trend in the Size of Atoms and Effective Nuclear Charge
9.8. Electron Affinities and Metallic Character
9.9. Periodic Trends Summary

Chapter 10: Chemical Bonding I: The Lewis Bonding
10.1. Bonding Models and AIDS Drugs
10.2. Types of Chemical Bonds
10.3. Representing Valence Electrons with Dots
10.4. Ionic Bonding: Lewis Symbols and Lattice Energies
10.5. Covalent Bonding: Lewis Structures
10.6. Electronegativity and Bond Polarity
10.7. Lewis Structures of Molecular Compounds and Polyatomic Ions
10.8. Resonance and Formal Charge
10.9. Exceptions to the Octet Rule: Odd-Electron Species, Incomplete Octets, and Expanded Octets
10.10. Bond Energies and Bond Lengths
10.11. Bonding in Metals: The Electron Sea Model

Chapter 11: Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory
11.1. Morphine: A Molecular Imposter
11.2. VSEPR Theory: The Five Basic Shapes
11.3. VSEPR Theory: The Effect of Lone Pairs
11.4. VSEPR Theory: Predicting Molecular Geometries
11.5. Molecular Shape and Polarity
11.6. Valence Bond Theory: Orbital Overlap as a Chemical Bond
11.7. Valence Bond Theory: Hybridization of Atomic Orbitals
11.8. Molecular Orbital Theory: Electron Delocalization

Chapter 12: Liquids, Solids, and Intermolecular Forces
12.1. Water, No Gravity
12.2. Solids, Liquids, and Gases: A Molecular Comparison
12.3. Intermolecular Forces: The Forces That Hold Condensed States Together
12.4. Intermolecular Forces in Action: Surface Tension, Viscosity, and Capillary Action
12.5. Vaporization and Vapor Pressure
12.6. Sublimation and Fusion
12.7. Heating Curve for Water
12.8. Phase Diagrams
12.9. Water: An Extraordinary Substance