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1 The big questions and goals for the next decade
Ultra-High-Energy Cosmic-Ray (UHECR) astronomy in the next decade aims to answer the ques-
tions: What is the nature and origin of UHECRs? How are UHECRs accelerated to such extreme
energies? Are there multiple types of sources and acceleration mechanisms? Do UHECRs consist
of both protons and heavier nuclei, and how does the composition evolve as a function of energy?

In order to address these questions, the goals for the next decade will be to: identify one or
more nearby UHECR sources, refine the spectrum and composition of the highest-energy Galactic
and extragalactic cosmic-rays, exploit extensive air showers (EAS) to probe particle physics inac-
cessible at accelerators, and develop the techniques to make charged-particle astronomy a reality.

This agenda is largely achievable in the next decade, thanks to major experimental upgrades
underway and new ground observatories and space missions in development. In combination with
improved astrophysical neutrino statistics and resolution, the future UHECR observatories will
enable a powerful multi-messenger approach to uncover and disentangle the common sources of
UHECRs and neutrinos.

2 The UHECR paradigm shift
Synopsis: Results from the current large hybrid detectors have dispelled the pre-existing simple
UHECR picture. A new paradigm is emerging and needs to be clarified and understood.

The discoveries made over the past decade have transformed our understanding of UHECRs
and their sources. Prior to the development of very large, hybrid detectors, it was commonly
believed that UHECRs were protons, that a spectral cutoff (if indeed there was one!) should
be due to “GZK” energy losses on the cosmic microwave background [1, 2], that the Galactic-
extragalactic transition would be marked by a shift from Galactic iron to extragalactic protons, and
that the ankle feature at a few EeV marked the Galactic-extragalactic transition. We know now that
this simple picture is mostly, if not entirely, wrong.
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Figure 1: UHECR spectra measured by TA and Auger,
located in the northern and southern hemispheres, re-
spectively (adapted from [3]).

This revolution in our understanding was
achieved thanks to: (i) hybrid detectors with
air-fluorescence telescopes and surface detec-
tors, plus improved measurement of fluorescence
yields, giving much better energy calibration
and providing greater sensitivity to composition;
(ii) large aperture and high statistics, essential to
reducing the systematics and particle-physics un-
certainties in composition studies and providing
sensitivity to tiny anisotropies in the UHECR ar-
rival directions; and (iii) all-sky sensitivity thanks
to detectors in both hemispheres, with overlapping
regions of the sky. Together, these advances en-
abled the spectrum, composition and anisotropies
to be measured with higher resolution and smaller
systematics from 1017 to above 1020 eV.

UHECR spectrum – ankle and flux suppression: well established but not well explained
As shown in Fig. 1, the UHECR energy spectrum can be roughly described by a twice-broken

power law [4–8]. The first break is a hardening of the spectrum, known as “the ankle.” The sec-
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ond, an abrupt softening of the spectrum, may be interpreted as the long-sought GZK cutoff [1, 2],
or else may correspond to the cosmic accelerators running out of steam [9]. The differential en-
ergy spectra measured by the Telescope Array (TA) experiment and the Pierre Auger Observatory
(Auger) agree within systematic errors below 1019 eV. However, even after energy re-scaling, a
large difference remains at and beyond the flux suppression [10] and could be hinting at fundamen-
tal differences between the northern and southern UHECR skies, since the spectra seem to agree
at all energies in the common region of the sky [11, 12]; see however [13].

UHECR primary composition – a more complex picture emerges
The atmospheric column depth at which the longitudinal development of a cosmic-ray shower

reaches maximum, Xmax, is a powerful observable to determine the UHECR nuclear composition.
Breaks in the elongation rate – the rate of change of 〈Xmax〉 per decade of energy – are associated to
changes in the nuclear composition [14], even when uncertainties in the UHE particle physics limit
the accuracy of mapping between Xmax and mass A. The Xmax measurements of both TA [15, 16]
and Auger [17–20] indicate a predominantly light composition at around the ankle. At the highest
energies (above 10 EeV), the Auger Collaboration reports a significant decrease in the elongation
rate, as well as a decrease of the shower-to-shower fluctuations of Xmax with energy. Both effects
suggest a gradual increase of the average mass of cosmic rays with energy. Interpreting the data
with LHC-tuned hadronic interaction models gives a mean baryon number A ≈ 14 − 20 at E ≈
1019.5 eV. The Auger-TA joint working group on composition concluded that the measurements of
the average shower maximum by TA and Auger are compatible within experimental uncertainties
at all energies [21, 22]. The observed decrease of the standard deviation of the Xmax distributions
reported by Auger can currently neither be confirmed nor ruled out by TA because of statistical
limitations. Thus the most recent data of UHE observatories reveals a complex evolution of the
cosmic-ray composition with energy that challenges the old simplistic models of CR sources.

UHECR Anisotropy – where are the sources?

Figure 2: Sky map, in equatorial coordinates, of local over-
and under-densities in units of standard deviations of UHECRs
above 47± 7 EeV. Taken from [31].

Composition measurements have led to
a paradigm shift, with cosmic rays now un-
derstood to be light (proton dominated) near
1018 eV and evolving towards heavier com-
position with increasing energy, spanning a
narrow range of atomic masses at each en-
ergy. Below the ankle, the arrival direc-
tions are highly isotropic [24], arguing that
these protons must be of extragalactic ori-
gin. They are consistent with being sec-
ondary products of the photo-disintegration
of UHECR nuclei in the environment of their sources [25] and/or can share the origin of PeV neu-
trinos [26, 27]. At higher energies, Galactic and extragalactic deflections of UHECR nuclei are
expected to smear point sources into warm/hot spots, for which evidence is accumulating. TA has
recorded an excess above the isotropic background-only expectation in cosmic rays with energies
above 1019.75 eV [28, 29], while Auger has reported a possible correlation with nearby starburst
galaxies, with a (post-trial) 4σ significance, for events above 1019.6 eV [30]. A slightly weaker
association (2.7σ) with active galactic nuclei emitting γ-rays is also found in Auger events above
1019.78 eV [30]. A blind search for anisotropies combining Auger and TA data has been recently
carried out, with the energy scales equalized by the flux in the common declination band [31]. The
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most-significant excess is obtained for a 20◦ search radius, with a global (post-trial) significance
of 2.2σ. The local (Li-Ma [32]) significance map of this study is shown in Fig. 2. The tantalizing
visual correlation of high-significance regions with the supergalactic plane is currently under study
within the Auger/TA anisotropy working group.

UHECR� neutrino – the missing GZK neutrinos and targets of opportunity
The non-observation of neutrino candidate events beyond background expectations above 1016 eV

by IceCube [33], Auger [34], and ANITA [35] severely constrains the magnitude of the very high-
energy neutrino flux. This flux has a nearly guaranteed component from the decays of pions pro-
duced by UHECR protons interacting en route to Earth [36]. The accumulation of these neutrinos
over cosmological time, known as the cosmogenic neutrino flux, constitutes a powerful tool of the
multi-messenger program. IceCube, Auger, and ANITA limits already challenge models in which
the highest-energy UHECRs are proton-dominated [37–44]. Additionally, UHECR experiments
add the capability of searching for neutrinos from target-of-opportunity events [45–47].

Closing the loop – Particle physics with UHECRs
Essential to accurate composition determination is the correct understanding of the physics

of EASs, which requires accurate modeling of particle physics at center-of-mass energies up to
hundreds of TeV – far beyond the 14 TeV reach of the LHC. Internal-consistency studies of EASs
show that state-of-the-art LHC-tuned hadronic event generators do not correctly reproduce in detail
the multitude of observables that can be probed by UHECR detectors [48, 49]. Upgraded and
next-generation experiments are designed to extend our understanding of hadronic interactions
well into the hundreds of TeV regime [50–53]. This will increase the accuracy in determining the
UHECR composition, and be a boon to particle physics. The column energy-density in UHECR-
air collisions is an order of magnitude greater than in Pb-Pb collisions at the LHC [54], suggesting
the potential for new hadronic physics from gluon saturation and the possibility of exploring quark-
gluon plasma (QGP) at far higher energies than available in accelerators [55–57]. To find out more
about the latest results on UHECRs, see e.g. [58–60].

3 Identifying candidate sources for extreme accelerators
Synopsis: The high-energy (HE) astrophysics community remains abreast with the evolving ob-
servational picture and has developed a wide variety of new exciting models that will be further
tested by the data collected over the next decade.

An even greater diversity of sources and acceleration mechanisms is now under consideration
as a result of theory advances and the evolving observational picture. If the highest-energy UHE-
CRs are exclusively intermediate mass nuclei, as is consistent with present data, the demands on
accelerators are considerably eased compared to a pure-proton scenario, because the maximum
required rigidity R = E/Z and the bolometric luminosity required of the candidate sources are
reduced; here Z is the charge of the UHECR in units of the proton charge. Further refinements
in measuring the composition evolution and possible composition anisotropy are crucial to source
inference.

Rapid progress in computational HE astrophysics is dramatically advancing the study of ac-
celeration mechanisms. Some of the current contenders for acceleration mechanisms and source
types are: shock acceleration [61–68], in systems ranging from the large scale shocks surrounding
galaxy clusters [69–71] to internal or external shocks of starburst-superwinds [72, 73], AGN [74–
82] or GRB [83–90] jets, and the jets of tidal disruption events (the transient cousins of AGN
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jets) [92–94]. Other contenders are: shear acceleration [96, 97] and one-shot mechanisms such
as “espresso” [98] in which an AGN or other jet boosts a galactic CR of the host galaxy; EMF
acceleration as in fast-spinning pulsars [99–101] and magnetars [102], black holes [103–105], and
potentially reconnection, explosive reconnection, gap and/or wakefield acceleration [106–108].

The multitude of possibilities suggests there may well be multiple sources of UHECRs, some
of which may be transient, making the identification of sources even more challenging and es-
sential. Anticipating the advent of UHECR-astronomy thanks to composition-tagging and better
understanding of the Galactic magnetic field, we can foresee having access to the UHECR spec-
trum of individual sources. That will be key to determining the acceleration mechanism(s) and
identifying the potential sources, whether those are steady or transient [109], much as spectra at
X-ray and γ-ray wavelengths have clarified the workings of blazars and their kin.

4 Stepping up to the new challenges
Synopsis: Future discoveries will be made through a combination of enhanced statistics, refined
analyses afforded by upgraded observatories and next-generation experiments, and the additional
constraints provided by multi-messenger astrophysics.

The more complex picture that has emerged over the past decade presents a challenge to dis-
covering UHECR sources and unraveling how UHECRs are accelerated – the holy grail of multi-
messenger astrophysics for decades. Yet, after about a decade of operation, both Auger and TA
have provided tantalizing evidence that new discoveries are within reach. In this context, the dis-
covery of a large-scale asymmetry in the arrival direction distribution of events recorded by the
Auger [110, 111] (statistical significance > 5σ) represents a compelling example of the power
of accumulating more statistics. By 2025, Auger will roughly double the size of the sample for
which the 4σ correlation with starburst galaxies was observed [30], allowing for an independent
test of the starburst hypothesis. Combining the data samples Auger may actually reach a statistical
significance > 5σ by 2025. For TA, a significant increase of exposure will allow the northern
hemisphere hot spot to be adequately explored.

The path to new discoveries – increased exposure and higher sensitivity
Both Auger and TA are undergoing upgrades to respond to the evolving observational picture.

TA×4 is designed to cover the equivalent of Auger’s aperture [112], to allow for a 5σ observa-
tion of the northern hot spot by 2026 or so. Auger’s upgrade (“AugerPrime” [113]) focuses on
more detailed measurements of each shower observed. This will enable event-by-event probabilis-
tic composition assignment (hence selection of low-Z events), enhanced capacity to study UHE
hadronic interactions, and increased sensitivity to high-energy neutrinos [114, 115]. Both upgrades
contribute to an overall strategy comprising three broad approaches:
• Detailed information on the composition of UHECRs as a function of energy can eliminate some
source candidates from contention as a dominant contributor, while combining the UHECR spec-
trum and composition with neutrino and γ-ray spectra, produces powerful constraints on the envi-
ronment surrounding the sources.
•Composition-assisted anisotropy studies bring new potential to identify individual UHECR sources.
With a mixed composition, UHECRs can experience large deflections by Galactic and extragalac-
tic magnetic fields, even at the highest energies. Composition-tagging allows the subset of events
with highest rigidity and hence smallest deflections to be selected, to strongly enhance source iden-
tification both with UHECRs alone and in combination with neutral messengers.
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•Neutral-messenger arrival direction correlations can identify individual sources, while their tem-
poral associations are sensitive to flaring sources. However, correlations between ν’s and γ’s alone
cannot give a complete picture. Even if some blazars produce UHECRs, the majority of the AGN
jets are beamed away from Earth, thus not all sources may be observable with neutral particles.

By studying the time evolution of the test statistics of the anisotropy searches [28–30], we have
projected the required exposures to obtain a 5σ confirmation of the various hypotheses. These
target exposures, shown in Fig. 3, demonstrate that the continued operation into the next decade
of the upgraded observatories will bring us within reach of new discoveries. Based on the existing
data, new target exposures and new resolutions on key observables can be inferred and should
become the basis for the design of next-generation ground observatories and space instruments.

Requirements to achieve the science goals and next generation UHECR experiments

Figure 3: The historical growth of UHECR integrated expo-
sures [7, 8, 116–119]. The projected integrated exposures of
Auger and TA×4 are shown together with the target expo-
sure bands that could achieve a 5σ observation of the northern
hot spot (TA/blue) and 5σ confirmation of the starburst and
γAGN hypotheses (Auger/red and Auger/black). The lower
edge of the bands indicates the required exposure of an ex-
periment which permanently observes the same region of the
sky as Auger/TA, whereas the upper edge indicates the re-
quired exposure for a full-sky instrument which observes the
Auger/TA sky only half of the time. Figure by J.F. Soriano
(CUNY).

Complementing the upgraded Auger and
TA detectors, the next generation of UHECR
instruments focusing on the flux suppres-
sion region (E & 1019.6 eV) will need to
achieve: (i) Significant gain in exposure,
from Fig. 3 we estimate ∼ 5× 105 km2 sr yr
to allow for a 5σ observation of all poten-
tial signals. (ii) A resolution ∆Xmax ∼
20 g/cm2 [120]. (Note that 〈Xmax〉 of p and
Fe are separated by ∼ 100 g/cm2 [121], thus
the recommended ∆Xmax would allow stud-
ies with a four-component nuclear composi-
tion model [122–125].) (iii) An energy reso-
lution ideally ∆E/E . 20% to limit the ef-
fects of lower-energy event spillover near the
flux suppression [126]. (iv) An angular reso-
lution comparable to that of previous experi-
ments to both test the hints for intermediate-
scale anisotropies in Auger and TA data and
continue the search for small-scale cluster-
ing. (v) Full sky coverage to test the hints
of declination dependence of the TA spectrum [11, 12].

At present, the most advanced concept in pursuit of these objectives is the Probe of Extreme
Multi-Messenger Astrophysics (POEMMA) satellites [127]. POEMMA will reach∼ 2.5×105 km2

sr yr exposure in 5 years with (calorimetric) stereo EAS reconstruction that significantly improves
the angular, energy, and Xmax resolutions over that from monocular space-based EAS measure-
ment. A factor ×10 increase over current UHECR apertures may be achievable on the ground;
e.g., the GRAND project has been designed to use low-cost radio antennas deployed over 200,000
km2 to measure highly-inclined EASs from UHE cosmic-rays and neutrinos [128].

In the new era of multi-messenger astronomy, improved measurements of the highest-energy
particles will provide a compelling and complementary view of the extreme universe. The UHECR
community is aggressively responding to the new questions posed by the UHECR paradigm shift.
The next decade will test the hints of source candidates and build the next-generation experiments
that will usher in a new era of charged-particle astronomy.
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[128] J. Alvarez-Muñiz et al. [GRAND Collaboration], The Giant Radio Array for Neutrino De-
tection (GRAND): Science and Design, arXiv:1810.09994 [astro-ph.HE].

17



Endorsements:

As of March 4th 12:00pm MT, 113 scientists from 22 countries provided their support to this
white paper. The complete list of endorsers is below:

AbuZayyad Tareq, Adams James, Aloisio Roberto, Alves Batista Rafael, Antoniadis Igna-
tios, Attallah Reda, Bai Xinhua, Barger Vernon, Bertaina Mario Edoardo, Bertone Peter, Besson
Dave, Bisconti Francesca, Biteau Jonathan, Botner Olga, Bueno Antonio, Bustamante Mauricio,
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